## A model for composition-specific life cycle inventories of regionalised wastewater fates



Commissioner: Federal Office for the Environment (FOEN) represented by Peter Gerber



Author: Gabor Doka Doka Life Cycle Assessments, Zurich



Technical report, Zurich, June 2021

conditions.

| Author      | Gabor Doka, Doka LCA, Zurich, do@doka.ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Review      | Ivan Muñoz of 20 LCA consultants, Aalborg, Denmark, reviewed in July 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Corrections | Compared to the first version of 2021 of this report text was added regarding "Full integration", on changes in default activity names of waste water treatments (Tab. 18.1), source of COD/BOD/TOC conversion factors , information on wastewater from NF3 production, and several typos were corrected.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Title image | An impression of micro-organisms, the major agents of removal of organic water pollutants in natural and technical systems, especially in aerobic biological treatment. Photograph is approximately 400 micrometers wide. Depicted is a colony of ciliates, Vorticella microstoma. Microscopy photograph by Andrei Savitsky, January 2019. https://upload.wikimedia.org/wikipedia/commons/2/22/Vorticella_campanula.jpg Creative Commons Attribution 4.0 International license. Editorial changes: Cropped, rotated, colour saturation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Disclaimer  | The information contained in this report were carefully elaborated and compiled by the author according to best knowledge and available data. Due to the broad scope of the task and the inherently variable nature of the subject, errors or deviations cannot be excluded. For this reason the information contained in this report is provided without warranty of any kind, express or implied, including but not limited to the fitness for a particular purpose. In no event shall the author, Doka Life Cycle Assessments or the commissioner be liable for any claim, damages or other liability, arising from the use, application or dissemination of this information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Copyright   | Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0)<br>https://creativecommons.org/licenses/by-sa/4.0/<br>Copyleft © 2002-2023 Gabor Doka, do@doka.ch . You are free to:<br>Share – copy and redistribute the material in any medium or format<br>Adapt – remix, transform, and build upon the material<br>Under the following terms:<br>Attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were<br>made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or<br>your use.<br>ShareAlike – If you remix, transform, or build upon the material, you must distribute your contributions<br>under the same license as the original.<br>No additional restrictions – You may not apply legal terms or technological measures that legally restrict others<br>from doing anything the license permits.<br>The reports are provided free of charge to anybody. The reports or derivatives may not be sold or offered for<br>sale, or included with software products offered for sale. If you paid money to obtain these reports, somebody |
|             | prohibited from distributing the reports. The reports come with absolutely no warranty. These are free documentations, and you are welcome to redistribute them under the Creative Commons Attribution-ShareAlike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 Declaration
 This report and all previous reports by Doka LCA were created without any use of generative artificial

 intelligences like ChatGPT or similar. Used were however traditional English-German dictionaries and thesauri.

Suggested citation: Doka G. (2021) A model for composition-specific life cycle inventories of regionalised wastewater fates. Doka Life Cycle Assessments, Zurich, Switzerland. Commissioned by Swiss Federal Office for the Environment (FOEN), Berne, Switzerland. Available at http://www.doka.ch/publications.htm

- Significant digits Figures in this report often feature several digits. This is not to imply that all the shown digits are really significant or that the data displayed is very precise. Showing several digits helps to minimise the avoidable accumulation of rounding mistakes along the chain of calculations performed here, and in possible future studies referring to this data.
- Percent is not a unit A value like 100% is mathematically identical to 1, and "33%" is just a way to write the value 0.33 (which one could also write in yet another different format as "3.3·10<sup>-1</sup>"). Mere *formatting* does not and should not influence the *magnitude of a value*. There is therefore no need to introduce factors or divisors of 100 in formulas for percentages (see e.g. Eq. 4.11). "Per cent" literally means "per one hundred" and implies the instruction "divide by 100", therefore the mathematical value of the expression "33%" is 33/100 = 0.33 (not 33). In contrast, a formula to calculate a gram value from kilograms must include a factor of 1000, because gram is a *physical unit* (not just a different way to "format" a kilogram value).

### Contents

| 1                | Introduction                                           | 7  |
|------------------|--------------------------------------------------------|----|
| 2                | Goal and scope                                         | 7  |
| 2.1              | Other wastewater LCAs with different goals             | 8  |
| 3                | Relevance of unsanitary conditions                     |    |
| 4                | Sanitation levels in countries                         | 11 |
| 4.1              | The WHO/UNICEF JMP statistics for SDG 6.1.3            | 11 |
| 4.2              | Adopting JMP data for industrial wastewater fate       | 12 |
| 5                | Modelling concept wastewater treatment                 | 24 |
| 6                | Average wastewater composition                         | 25 |
| 7                | Emissions from sewers                                  |    |
| 8                | Elimination in wastewater treatment                    |    |
| 8.1              | Removal of raw sludge                                  | 28 |
| 8.2              | Transfer coefficients primary treatment                | 30 |
| 8.3              | Transfer coefficients secondary treatment              | 31 |
| 8.4              | Transfer coefficients tertiary treatment               | 31 |
| 8.5              | Synopsis transfer coefficients wastewater treatment    |    |
| 9                | Sludge digestion                                       |    |
| 9.1              | Country-specific digestion rates                       | 33 |
| 9.2              | Modelling of sludge digestion                          | 35 |
| 10               | Digester gas utilization                               |    |
| 10.1             | 1 Digester gas combustion emissions                    | 37 |
| 10.2             | 2 Energy production efficiencies                       | 37 |
| 11               | Treatment auxiliaries                                  |    |
| 11.              | 1 Phosphate precipitation                              | 37 |
| 11.2             | 2 Sludge flocculation                                  |    |
| 12               | Treatment energy demand                                |    |
| 12.              | 1 Economy of scale                                     |    |
| 13               | Water balance in treatment plant                       |    |
| 14               | Process-specific burdens in treatment                  |    |
| 15               | WWTP infrastructure                                    | 45 |
| 15. <sup>-</sup> | 1 Extrapolation of WWTP infrastructure with plant size | 45 |
| 15.2             | 2 Infrastructure expenditures                          | 46 |
| 15.3             | 3 Infrastructure of plant with different stages        | 48 |

| 15.4 Application of extrapolation to three types of territory    | 48 |
|------------------------------------------------------------------|----|
| 16 Sewer Infrastructure                                          | 50 |
| 16.1 Sewer infrastructure extrapolations                         | 51 |
| 16.2 Sewer sizes extrapolation in three types of territory       | 52 |
| 16.3 Residential sewer                                           | 53 |
| 17 Sludge Disposal                                               | 54 |
| 17.1 Country-specific sludge disposal pathways                   | 54 |
| 17.2 Treatment sludge to agriculture                             | 55 |
| 17.3 Sludge disposal in landfill                                 | 60 |
| 17.4 Sludge disposal in waste incineration                       | 61 |
| 18 Wastewater disposal dataset names                             | 61 |
| 19 Wastewater composition definition                             | 64 |
| 19.1 Appropriate wastewater pollutant parameters                 | 64 |
| 19.2 Uncertainty of input composition                            | 67 |
| 19.3 Relevance of emissions of organic compounds                 | 67 |
| 19.4 Wastewater degradability                                    | 71 |
| 20 Corrections in wastewater composition                         | 72 |
| 20.1 Wastewater from particle board production (2014)            | 72 |
| 20.2 Wastewater from medium density fibreboard production (2014) | 73 |
| 20.3 Wastewater from hard fibreboard production (2014)           | 73 |
| 20.4 Plywood production effluent (2003)                          | 73 |
| 20.5 LCD module production effluent                              | 73 |
| 20.6 Heat carrier liquid, 40% propylene glycol ( $C_3H_8O_2$ )   | 74 |
| 21 New exchanges for environmental scarcity LCIA                 | 74 |
| 22 Calculation Manual                                            | 75 |
| 23 Results                                                       | 75 |
| 23.1 An example for two countries                                | 75 |
| 23.2 The unheeded utility of wastewater treatment                | 76 |
| 24 Outlook                                                       | 78 |
| 25 Glossary                                                      | 79 |
| 26 Appendix A                                                    |    |
| 26.1 Papers with information on WWTP infrastructure data         | 81 |
| 27 Appendix B: Country data                                      |    |
| 28 References                                                    |    |
|                                                                  |    |

### 1 Introduction

The goal of this study is to create a calculation model to inventory the disposal of different types of wastewater. The purpose of this is to be able to supplement other activity inventories with the quantified burdens from the disposal of a specific wastewater composition, which can be defined by the user. Several already used wastewater compositions from processes are supplied as well.

This work is an update and expansion of the calculation model in (Doka 2003-IV), where only wastewater treatment in Switzerland was modelled. The updated model is regionalised, reflecting the wastewater sanitation and treatment situations in other countries as well. For 251 countries statistical data or estimates were compiled regarding untreated releases, wastewater sewering rates, treatment rates, and treatment stages. The model includes also the pertinent expenditures for sewer and treatment plant infrastructure, as well as the treatment of any secondary waste (treatment sludge) or tertiary waste (for instance landfilling of sludge incineration residues) maintaining the dependency on the initial wastewater input.

The model is implemented in an Excel calculation tool which allows the direct creation of inventory process files (XML) in EcoSpold2 (ecoinvent v3+, 2011–) or EcoSpold1 format (ecoinvent v1–2.2, 2003–2010).

Thanks to Dr. Stephan Pfister, senior research associate at Ecological Systems Design ESD, ETH Zürich, for his helpful comments on chapter 13 'Water balance in treatment plant'.

### 2 Goal and scope

The goal of the model presented here is to provide inventories for the disposal of a particular wastewater composition. The inventory starts with 1  $m^3$  of a specific wastewater as it is outputted from a particular wastewater-producing activity with a specific composition.<sup>1</sup> The functional unit is 1  $m^3$  of untreated wastewater (input).

Depending on the chosen geographic setting, wastewater might not or only partially treated at all. Some countries have widespread lack of sewer networks or wastewater treatment plants. The share of wastewater emitted untreated will be included in the wastewater disposal inventory. A part of sewered wastewater might also be emitted untreated, which results in the same untreated pollutant emissions but requires a sewer network.

Sewered wastewater arriving in a treatment plant will be purified according to the mix of technology stages encountered in a country. Treatment sludge might be digested producing digester gas and subsequently some gross energy outputs, depending on parameters set by the user. The remaining sludge needs to be disposed, and disposal on agricultural fields, in a biologically active landfill, or in municipal waste incineration depending on settings by the user.

Throughout the report the terms "waste-specific" or "wastewater-specific" refer to the fact that inventories are heeding as far as possible the composition of a specific wastewater input, and not generic, average wastewater.

To save database space and the emissions and exchanges from all these processes are compiled into one single process inventory.<sup>2</sup> This is similar to the scope in the previous wastewater treatment model, where however all wastewater was assumed to be sewered (Doka 2003-IV).



Fig. 2.1 Simplified overview of the possible inventoried processes in the wastewater disposal activity.

### 2.1 Other wastewater LCAs with different goals

LCA is a procedure with a very flexible approach and usually different goals and purposes can occur even for the same real-world activities.

As outlined above, the purpose of the model presented here is to complement wastewater-producing activities with the caused burdens of the disposal of their specific wastewater output. It can be said, that the model is suited to the needs of the *wastewater producer*, in order to complete LCI process chains.

But this is not the only way how an LCA of wastewater disposal can be targeted. For instance the LCA perspective and information needs of a *wastewater treatment plant operator* will likely be quite different. Here not the treatment of one single *specific* wastewater composition is of interest, but of a generic average wastewater expected at the location, which is the cumulated mix of hundreds or thousands of individual process sources. Variation of the wastewater within expectable bounds could be a topic, but much more granularity will probably be desired in the technical details of the treatment

<sup>&</sup>lt;sup>2</sup> Without this, the process chain could lead to several very granular process inventories for each individual wastewater and location without them being much use to anyone. For instance, there could be an activity "treatment, landfilling of incineration residues from incineration of sewage sludge from treatment of wastewater from potato starch production" along with "treatment, agricultural spreading of sewage sludge from treatment of wastewater from potato starch production " etc. In the compact version, there will be only one dataset "treatment, wastewater from potato starch production". Different geographical versions of such a dataset would reflect geographically different wastewater disposal mixes.

operation: stages, capacities, residence times, auxiliary demands, etc. and their possible options or variations. Here optimization of the treatment process on the whole—increasing elimination levels, reducing expenditures—would be a fitting goal of an LCA study. Here not the information needs of a particular upstream wastewater producer are relevant, but the those of the treatment plant operator. It is important to realize that an LCA with this focus will not be able to meet the needs of an LCA of the former type.<sup>3</sup>

A yet different LCA approach can be outlined from the perspective of *the producer of a particular chemical compound*. As part of corporate responsibility and product environmental safety guidelines it will be relevant to know how a compound behaves during and after usage. Here the behaviour of a particular compound in wastewater treatment would be of interest. Some LCIA models feature fate calculations of emissions including generic WWTPs. A substance-focused LCA of wastewater treatment would bring those generic fate calculations to the foreground of an LCA study—including indirect burdens like for auxiliaries and infrastructure. Here possible questions would more likely revolve around degradabilities, accumulations, toxicities, ultimate sinks in correspondence to types of wastewater treatment. An example of such an LCA model is (Munoz 2019).

A synopsis of those three different types of LCAs for wastewater or wastewater treatment is shown below. Of course also other goals than shown here are possible.

The takeaway from this section is that the model presented here was designed with a specific purpose—calculating burdens of disposal for a particular wastewater composition—and although there will be partial overlaps, is not meant or designed to serve different goals.

For practical reasons of data availability the model's granularity is anticipated to fit the probable level of information available to a wastewater producer. Some aspects of the model are therefore included in a more generic manner, while others are treated in more detail.

If time and resources to research input data were not an issue for a model user, then an overarching and detailed model satisfying various LCA application goals would be appealing. Since this is not so, it is sensible to match models as far as possible with the required model input information a user is likely able to find.

<sup>&</sup>lt;sup>3</sup> Theoretically, a very detailed model could be conceived, offering the desired granularity regarding wastewater input down to a particular generating source *and* vast details for the treatment process. Here practical problems of data availability ensue, when for instance a wastewater-producer would be asked to set all the WWT operator's bottom-up parameters like residence times, sludge loadings etc., many of which make sense for a single plant, but are not necessarily known in a generic fashion.

| Stakeholder or focus:                 | 1. Wastewater producer                                               | 2. Treatment plant operator                                                 | 3. Producer of<br>compounds                                                                                     |
|---------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Wastewater input:                     | Process-specific effluent<br>from wastewater<br>producing activity   | Average expected wastewater mixture                                         | One or several specific<br>chemical compounds in<br>wastewater                                                  |
| Example:                              | Organic carbon, Nitrogen,<br>Phosphorus, Copper,<br>Zinc             | Volatile Suspend Solids,<br>soluble biological oxygen<br>demand, Alkalinity | Diethylenetriamine<br>penta(methylene<br>phosphonic acid)                                                       |
| Granularity of wastewater definition: | medium (single producer<br>output with available<br>parameters)      | low (expected inflow<br>average)                                            | very high (single<br>compound)                                                                                  |
| Granularity of treatment model:       | low (e.g. country average)                                           | high (plant specific and variant options)                                   | medium to low                                                                                                   |
| Possible LCA goals:                   | LCA burdens for<br>downstream<br>disposal/treatment of<br>wastewater | Plant optimisation                                                          | Substance cradle-to-<br>grave LCA. Degradability<br>and accumulation.<br>Generated burdens from<br>substance(s) |

### **3** Relevance of unsanitary conditions

The human health damages from unsafe sanitation worldwide are estimated to be 41'500'000 DALYs for 2017 (Murray et al. 2018, p.1940). These damages are from diarrhoeal diseases from unsafe wastewater disposal and include 774'000 deaths for 2017. Of the world population 21.2% are exposed to unsafe sanitation (ibid, p.1927). With a world population of 7548 million in 2017, a total of 1600 million people are exposed to unsafe sanitation. Per capita and year the human health damage from unsafe sanitation in that population part is therefore 0.026 DALY/cap.year.<sup>4</sup>

In the ReCiPe'13 LCIA method, a damage of 0.026 DALY would correspond to 515 burden points<sup>5</sup>. How does this burden from diarrhoeal diseases compare to the burdens already recorded in conventional LCIA from pollutant emissions? If a person's wastewater was emitted directly and untreated into surface water, a total LCIA burden of 3.48 points per year and capita would result (at 120 litres of wastewater daily per capita). So in a situation of unsafe sanitation the diarrhoeal diseases (515 points) outweigh by far the conventional LCIA burdens of untreated emissions into water (3.48 points).

This means that for LCA work in countries with unsafe sanitation, it would be very relevant for a complete picture to include the human health damages from unsafe sanitation, not merely the humanotoxic or ecotoxic effects of its contents.

LCA has developed mainly from an engineering side and seminal activities in LCA are "machines" in a wide sense and their "metabolic" effects (fuels in, emissions out etc.). In conventional LCA today the more situational effects, which affect hygiene of an area, are not considered. But there is conceptually nothing wrong with introducing effects from known risks of disease vectors at least in a

<sup>&</sup>lt;sup>4</sup> 0.026 DALY /cap.year = 41.5 million DALY/year / 1600 million capita.

<sup>555</sup> 515 points =  $0.029 / 0.0202 \cdot 40\% \cdot 1000$ , with normalisation 0.0202 DALY/cap.year, 40% weighting and a convenience factor of 1000.

generic fashion.<sup>6</sup> Ideally, LCIA developers would propose characterisation factors, for instance for 1 kilogram fecal matter emitted to water and soil.

On the other hand, the wastewater activity inventories elaborated here are mainly intended for industrial processes. Those might promote unsanitary conditions as well (e.g. from the food industry). Also animal husbandry produces faeces, which can become problematic to water supply. For many industrial processes though, a new inventory exchange for faecal emissions would not be pertinent.<sup>7</sup> For the time being a new exchange for faecal emissions is not included in the inventory model presented here.

### 4 Sanitation levels in countries

### 4.1 The WHO/UNICEF JMP statistics for SDG 6.1.3

The Joint Monitoring Programme—or JMP—of WHO/UNICEF meticulously recorded sanitation levels and technologies in over 200 countries, in most cases for the recent past of 2016 or 2017 (WHO/UNICEF JMP 2019). These statistics are elaborated in connection with the Sustainable Development Goal SDG 6.1.3 on the proportion of wastewater safely treated. Statistics on presence of sewers, and presence of centralised wastewater treatment facilities, technology types of toilet facilities (or absence thereof, i.e. open defecation) etc. are devised in those statistics. In the recorded data, the emphasis is on the situation for households, schools and health services/hospitals. For the treatment situation of *industrial* wastewaters no statistical data was recorded yet, although the SDG 6.1.3 would also include industrial and commercial wastewater (see UN-Habitat 2018).

### Sanitation burdens vs. LCA burdens

The statistics for SDG 6.1.3 focus on the *sanitation and human health aspects* for inhabitants, and less the *environmental burdens* as investigated in LCA. For instance, in the SDG framework a wastewater can be categorised as "safely treated" if it is disposed in the ocean with a long outfall pipeline, so as to minimise human contact, while in LCA this would represent a 100% emission to marine water with corresponding burdens (and also possible health damage rebounds e.g. via human consumption of marine fish). Many latrine types that are categorised in SDG as "safely treated" would correspond to 100% emission to soil in LCA. Also important distinctions are made in the SDG statistics whether toilet facilities are shared between several households or not, which is relevant from a perspective of sanitation, hygiene and disease transmission, but in LCA would have no burden signal, or rather possibly an advantageous one from shared infrastructure burdens per capita. So the aim and focus of SDG 6.1.3 and LCA are dissimilar – at least partly. Nevertheless the data gathered contains useful information and its adoption in this project is presented below.

<sup>&</sup>lt;sup>6</sup> More site-specific assessment is desirable, if possible, but for an initial inclusion a generic approach is fine. If in LCIA it is a common and accepted procedure to express the health damages for instance of an emission of  $NO_x$  to air with one single generic characterisation factor—averaging out population densities, climate etc.— then with a similar granularity the average generic health damages from unhygienic conditions can be included as well, at least as a signalling starting point.

<sup>&</sup>lt;sup>7</sup> Unsanitary conditions leading to diarrhoeal diseases are associated with microbial vectors which can occur in faeces, like cholera, noro virus, rota virus, or salmonella.

### 4.2 Adopting JMP data for industrial wastewater fate

The purpose of the wastewater models elaborated in this project is providing background data for wastewater disposal, see 'Goal and scope' on page 7. This is to complement processes inventories with waste-specific disposal activities. The vast majority of the wastewater-producing processes in the ecoinvent database are industrial or commercial activities, not household activities. Treatment levels and technologies in this project should therefore mainly reflect plausible technologies for disposal of such industrial wastewaters, not household wastewaters. For instance, if in a country like Uzbekistan 77% of the population uses a pit latrine for defecation, it makes little sense to assume that also *industrial* wastewaters, e.g. from a tannery, are also predominantly disposed in pit latrines in Uzbekistan. Pit latrines are rather unsuited to take up industrial wastewater regarding the volume capacity alone.

Fortunately, the JMP statistics detail also many other helpful parameters (WHO/UNICEF JMP 2019). Distinguished are for instance "Population connected to sewers" and "Population with connection to a wastewater treatment plant".<sup>8</sup>

- The first parameter "Population connected to sewers" describes the frequency of occurrence of sewer systems for wastewater transport in a nation. At the end of that sewer an untreated discharge can occur, or a more or less elaborate treatment in a wastewater treatment plant WWTP. Sewers are foremost a means of transport of wastewater away from inhabited areas; they do not unavoidably lead to a treatment plant.
- The second parameter "Population with connection to a wastewater treatment plant" describes the frequency of occurrence of inhabitants being connected to a working wastewater treatment plant in a nation. All WWTPs are fed by sewers so there is an overlap of the previous and this parameter. There is no significant transport of wastewater to WWTPs by trucks.<sup>9,10</sup>

These two parameters are employed here to produce estimates on external treatment of *industrial* wastewaters. The frequency of sewer occurrence in a country as described by the JMP parameter of the share of population connected to sewers is set equal to the proportion of industrial wastewater going into a sewer transport in that country (parameter %Sew in the present model). With this, an equivalence is assumed between a share of *population* and a share of *wastewater generated*. This is not entirely accurate, as not all inhabitants necessarily produce the same annual amounts of wastewater and also because there might be disparities in the geographical distribution of inhabitants and the distribution of industrial activities. Nevertheless the JMP parameters are used to quantify the prevalence of certain wastewater management aspects in a country. It is implicitly assumed that the

<sup>&</sup>lt;sup>8</sup> See <u>https://washdata.org/data/downloads#WLD</u> → Household Wold File <u>https://washdata.org/data/country/WLD/household/download</u> → JMP\_2019\_WLD.xlsx → sheet "Sanitation" → Columns "Wastewater treated" and "Sewer connections". Data is given for the national average, for urban and for rural situations. Detailed and unrestrained data is in the hidden sheet "Sanitation Data".

<sup>&</sup>lt;sup>9</sup> But faecal sludge from septic tanks can in some cases be transported by lorry to WWTPs. As septic tanks are not considered for the present model, no lorry transport for WWTP inputs is considered here.

<sup>&</sup>lt;sup>10</sup> In the JMP data, improved sanitary facilities (pit latrine with slab or better) can be shared with other households and then count only as limited service (instead of the better "basic service") due to their inferior sanitation situation. The figure for "wastewater treated" excludes these shared facilities, while the figure for "sewer connections" includes them. This makes the analysis on sewered vs. treated performed for the present project ill-footed, i.e. based on different parts of the population. However the numerical effect is small, as number of improved, but shared facilities (of any kind) are small (cf. total limited service is generally below 15%. At a GNI of 10'000 \$/cap.year it is below 2% ) and the frequency of sewer-connected facilities which are shared with other households is bound to be even smaller. This effect is neglected in the analysis here.

observed population-percent is a accurate enough indication of the frequency of certain wastewater fates.

The second parameter from JMP describes the frequency of wastewater being treated in wastewater treatment plant. Also this pattern is assumed here to be applicable to industrial wastewater, therefore describing the share of industrial wastewater being externally treated in wastewater treatment plant (parameter %WWTP in the present model).



# Fig. 4.1 Scheme of the initial wastewater fate employed in the model presented here. Industrial wastewater is either sewered or not, and sewered wastewater can be treated in WWTPs or not. Further differentiation of wastewater treatment in WWTPs is detailed further below.

Since all water into a wastewater treatment plant is assumed to be delivered by a sewer, the *difference* between the sewered wastewater (%Sew) and the treated wastewater (%WWTP) describes the share of wastewater that is being sewered, but not treated, but discharged untreated.

Finally, all wastewater not entering a sewer in the first place is assumed to be discharged without any treatment. This is expressed by (1-%Sew). It is implicitly assumed that in a region with pit latrines and similar levels of sanitation without sewers, no special efforts are made for external treatment of industrial wastewaters. Internal treatment of wastewater might still occur, but this is outside of the system boundaries, cf. Fig. 2.1 on page 8.

So in the derived model, a country's industrial wastewater fates can be summarised as follows:

| Tab. 4.1 | Description of modelling parameters use | ed for shares of fate of industrial wastewaters |
|----------|-----------------------------------------|-------------------------------------------------|
|----------|-----------------------------------------|-------------------------------------------------|

| %WWTP        | Sewer transport and treatment in wastewater treatment plant WWTP |
|--------------|------------------------------------------------------------------|
| %Sew – %WWTP | Sewer transport and subsequent direct discharge; not treated     |
| 1 – %Sew     | Direct discharge without sewer transport                         |

For the all three expressions above, the reference of 100% represents the sum total of wastewater produced per year.

#### Sanitation for industrial wastewaters

One might prejudge that in industrial operations wastewater treatment is improved and no or little uncontrolled emissions occur. This notion is disproved by statements made in a UN Analytical Brief on Wastewater Management (UN 2015:19):

"It is important to note that, in many cases, large volumes of industrial wastewaters which are legally discharged to decaying and/or badly operated sewerage networks, both combined and separate, never actually reach a treatment plant. Much is lost en-route through broken pipes or ends up in surface water drains with consequential pollution of both groundwater and surface watercourses." – UN 2015

While this statement does not help to support an equality of sanitation rates for population and for industrial wastewater as assumed in the present model, it refutes the notion that industrial wastewater is always treated appropriately.

### Geographical coverage of data

The JMP national data has a wide scope giving data for many nations of the world. For 232 listed countries, 221 (95%) have a national average on sewer connections. Most of that data is as recent as 2016 or 2017. For 117 countries (50%), data is available for treatment rates. Most countries without treatment data are those with low incomes, or small states like the Vatican or small island states like Saint Lucia.

### 4.2.1 National, urban and rural wastewater fate data

In the JMP national data 165 countries (71%) also have some data detailing rural and/or urban situations of sewer connections and treatment rates. So for those countries up to three sets of parameters are available: for the national average, for an average rural setting, and for an average urban setting. The parameters are expressed in the respective setting or territory. So a country might have for instance an average national sewering rate of 70%, a sewering rate in rural setting of 20%, and a sewering rate in an urban setting of 100%. The JMP data also provides values for the share of population in urban areas (%popU) for each country; and the given national, rural and urban rates are compatible with that share.<sup>11</sup>

The rural and urban data can be used in the inventory model presented here to further differentiate wastewater treatment situations. If a wastewater-generating process is known to be situated in an urban setting, more pertinent urban rates of sewering and treatment can be applied instead of the more generic national average. In other situations, a rural rate might be more appropriate, depending on the wastewater-generating process. In an unknown or generic situation the national average rate can be employed. In the inventory model presented here, the split into three different treatment territories (urban, rural, national) replaces the former split into five size classes of WWTPs (Doka 2003-IV:7).

<sup>&</sup>lt;sup>11</sup> I.e. the national rate %n must be equal to  $\%r \cdot (1-\%popU) + u\% \cdot \%popU$ , where %r is the rural rate and %u is the urban rate.

### 4.2.2 Augmentation of missing values in JMP wastewater fate data

To avoid data gaps in wastewater fate, an estimation and extrapolation procedure is derived below. Statistical data from JMP is used with priority, but estimates are used to fill missing data. As the estimates are rather coarse, it is better to find pertinent literature data or country statistics, or to estimate parameters based on country-specific sanitation conditions. Future updates of the SDG monitoring programmes as the WHO/UN Joint Monitoring Programme for sanitation would be a premiere source for such data.

For an extended list of 251 nations two rates (%WWTP, %Sew) in three territories (national, rural, urban) are sought, totalling 1506 figures. The original JMP data provides already 834 rates (55%) for 232 countries. The remaining 672 rates need to be estimated.

The sewering and treatment rates are often very dependent on national circumstances, even for countries of similar economic wealth. Therefore, the estimates are based as far as possible on the available statistical data characteristics of a country and extended to missing rates.

### 1. Complementing rural rates

In a first step, any missing rural rates are completed, when national and urban rates are provided in JMP data. Using the share of urban population (%popU) – also provided in JMP data tables – the rural rate is defined by:

| Eq. 4.1 | $\%r = \frac{\%}{2}$ | $\frac{bn - \% popU \cdot \% u}{1 - \% popU}$              |
|---------|----------------------|------------------------------------------------------------|
|         | where                |                                                            |
|         | %r =                 | Rural rate (e.g. treatment rate %WWTP, sewering rate %Sew) |
|         | %n =                 | National rate (e.g. treatment rate, sewering rate)         |
|         | %popU =              | Share of urban population in that nation                   |
|         | %u =                 | Urban rate (e.g. treatment rate, sewering rate)            |

This augmentation is performed where useful for the treatment rate %WWTP and/or the sewering rate %Sew.

### 2. Using available ratio of treated wastewater

The second augmentation is based on the observation that for available JMP statistics the share of sewered wastewater being treated in a WWTP (expressed by the ratio %WWTP / %Sew) is very often *identical* within one country, whether it is for the national, rural or urban territory.



### Fig. 4.2 Plot of ratios from available JMP data for (%WWTP/%Sew) of a national average (x-axis) vs. the same ratio in urban territories (blue squares) or rural territories (green circles) of that same nation (y-axis), showing the largely uniform nature of the (%WWTP/%Sew) ratio across different territories of the same nation.

If in one of the three territories of a nation, a ratio for (%WWTP / %Sew) can be derived from available statistical data, it is a fair assumption that this ratio is also a good estimate for that ratio in the other territories of that same nation. For instance the JMP statistics have %WWTP and %Sew data for rural Ethiopia (0.26% and 0.72%), but only %Sew rates for the urban and the national territories (2.79% and 1.14%), while the %WWTP rates are not available in those two territories. In this case, fair estimates for the missing %WWTP rates can be made by assuming the ratio (%WWTP / %Sew) available from the rural territory (0.36 = 0.26% / 0.72%) is also applicable to the other two territories and therefore the missing %WWTP rates can be estimated based on the available %Sew rates. In urban Ethiopia, the estimated %WWTP rate is therefore 1.02% ( =  $2.79\% \cdot 0.36$ ); and the national %WWTP rate can be estimated to be 0.41% (=  $1.14\% \cdot 0.36$ ).

Tab. 4.2 Exemplary depiction for the calculation chain from available rates (bold) using available %WWTP/%Sew ratios to derive country-specific estimates (grey). Arrows indicate flow of information.

|          | %WWTP %Sew |       | ratio %WWTP/%Sew |  |
|----------|------------|-------|------------------|--|
| rural    | 0.26%      | 0.72% | 0.36             |  |
| national | 0.41%      | 1.14% | 0.36             |  |
| urban    | 1.02%      | 2.79% | 0.36             |  |

From these first two extrapolation steps 12 additional rates could be added to the data.

### 3. Extrapolating ratio of treated wastewater

A third extrapolation is again based on the ratio for (%WWTP/%Sew). For nations where no such ratio can be derived from available statistical data for either of the three territories, the ratio is estimated from scratch based on a nation's Gross National Income (GNI in \$/capita.year). From available data, the general trend for the median values of the ratio vs. GNI is observable and this forms the base of the derived extrapolation formula.





Eq. 4.2  $\frac{\%WWTP}{\%Sew} = 1 - e^{\left[c \cdot GNI^{0.9}\right]} \text{ with } c = -5.5E-4$ where GNI = Gross National Income (\$/capita.year)Please note the exponent 0.9 to the GNI variable

Based on a nation's GNI the %WWTP / %Sew ratio can be estimated. The ratio is then used to derive missing %WWTP data from available %Sew data (%WWTP = %Sew  $\cdot$  %WWTP / %Sew). So also here the missing data is based as far as possible on available data, but the ratio is estimated based on GNI. Also the obverse were possible at this point—to derive missing %Sew data from available %WWTP data—but this results in no additional data with the 2019 JMP data.

This third estimation step adds 246 rates to the data in all three territories.

#### 4. Extrapolating the ratio of national vs. urban rates

The next estimation involves an extrapolation for the ratio of national vs. urban rates (NU). For mathematical reasons, this ratio cannot be smaller than the share of urban population %popU, and usually is only slightly higher. An estimate for missing NU ratios is based on the share of urban population and the observed median value of the ratio of national vs. urban rates from available data.



Fig. 4.4 Plot of the share of a nations urban population %popU (x-axis) against the ratio of national over urban rates from available JMP data, the trend of the median values (solid line) and the derived extrapolation (dashed line).

Eq. 4.3 
$$NU = \left(\frac{\% n}{\% u}\right) = \% pop U^{0.83}$$

where

NU = national rate over urban rate

%n = National rate (e.g. treatment rate, sewering rate)

%u = Urban rate (e.g. treatment rate, sewering rate)

%popU = share of urban population in a nation

Please note the exponent 0.83 to the %popU parameter

In countries with available national rate, therefore a urban rate can be estimated from:

Eq. 4.4 
$$\% u = \left(\frac{\% n}{NU}\right) = \left(\frac{\% n}{\% pop U^{0.83}}\right)$$
; corrected to  $\le 1$   
% $u =$  Urban rate (e.g. treatment rate, sewering rate)  
% $n =$  National rate (e.g. treatment rate, sewering rate)

This can be used to estimate additional rates for either missing urban %WWTP or %Sew rates from available national rates. This estimate adds another 114 urban rates to the data.

In nations now possessing data for national and urban rates, the rural rate can be mathematically stringently be derived from Eq. 4.1. This is based on the requirements of the national rate being the weighted average of the rural and the urban rates. This estimate adds another 114 rural rates to the data.

#### 5. Estimation of sewering and treatment rates based on Gross National Income GNI

Up to this point the estimation procedure has added data to countries where JMP statistics had provided *at least* one statistical rate value reflecting country-specific circumstances. Some country gaps remain at this stage where JMP 2019 statistics provide no data at all, for example for Taiwan. In order to be able to provide suggestions for sewering and treatment rates also for these countries, further extrapolations are employed.

Further estimates are derived from available national data from JMP for %Sew and %WWTP against a country's GNI, which allow to obtain a trend.



Fig. 4.5 Data values of JMP statistics on national rates of sewer connections (left) and wastewater treated (right).

A general trend of increasing sewering rates and treatment rates with increasing GNI is observable. By calculating tiered median values, the *typical central tendency* can be captured and be used as the basis of a formal extrapolation.



Fig. 4.6 Median values of statistics (solid lines) on national rates of sewer connections (left) and wastewater treated (right) and derived extrapolations (dashed lines).

The derived extrapolations are given in the following formulas.

| Eq. 4.5 | $\% Sew = 92\% \cdot \left(1 - e^{\left[c \cdot GNI^{1.4}\right]}\right)$ with c = -1.5E-06  |
|---------|----------------------------------------------------------------------------------------------|
| Eq. 4.6 | $\% WWTP = 90\% \cdot \left(1 - e^{\left[c \cdot GNI^{1.5}\right]}\right)$ with c = -3.5E-07 |
|         | where                                                                                        |
|         | GNI = Gross National Income (\$/capita.year)                                                 |

Please note the exponents to the GNI variable

In these extrapolations for national rates the maximal attainable rates are not 100%, but 92% or 90%. This is based on the observable median trend, where even at high GNI some wastewater is emitted untreated, e.g. in available data from Canada, Bermuda or Norway.

With these approximations it is possible to calculate values for %Sew and %WWTP from scratch based on a country's GNI alone. Next, using the approximations used in Eq. 4.3, urban rates can be

derived based on the share of urban population in a nation (%popU). And finally, using Eq. 4.4, also rural rates can be added. All this adds another 180 rate values.

### Uncertainty

As the employed extrapolations are often rather coarse, an uncertainty parameter (geometric standard deviation GSD) is applied to the extrapolated rates. The estimated GSD is based on observed variability of JMP statistical data and therefore the variability of the derived extrapolations. Care has been taken here to derive GSD values that result in reasonable upper and lower rate values that are within physically sensible realms.<sup>12</sup>

Eq. 4.7  $GSD_e = 1 + N \cdot \ln(m)$ , with N = -0.2171 where  $GSD_e =$  Geometric Standard Deviation of an <u>extrapolated</u> rate parameter m = mean value of rate parameter (between 0 and 1) If m = 0 the GSD is corrected to 100%

Also the original statistical JMP data has some uncertainty attached to it, although much smaller, as the data is based on actual surveys and statistics, rather than extrapolations. For rate parameters coming from original JMP data or from user overrides, the following GSD values are used.

Eq. 4.8  $GSD_o = 1 + N \cdot \ln(m)$ , with N = -0.07422 where  $GSD_o =$  Geometric Standard Deviation of an <u>original</u> JMP rate parameter If m = 0 the GSD is corrected to 100%

### 4.2.3 Treatment level employed in countries

In the sections above it was established, what percentage of the generated wastewater is being treated in a wastewater treatment plant (WWTP). WWTPs can have various levels of sophistication. Some WWTP merely remove the bulky solids (first stage mechanical treatment), while others have also more sophisticated stages of biological or chemical treatments.

In order to be able to capture the encountered level of treatment, the model developed here also differentiates the treatment level of a country's WWTP mix. Data is again available from the WHO/UN joint monitoring programme JMP, but not from the world overview file used in the sections above, but from the individual country files.<sup>13</sup>

<sup>&</sup>lt;sup>12</sup> The rates presented here all must remain in the bracket of 0% - 100%. Values larger than 100% make no sense. This also applies to an upper boundary estimate. As the upper boundary in a lognormal distribution is given by upper = mean  $\cdot$  GSD<sup>2</sup>, GSD values must be set so that all possible upper values remain within the valid bracket and are not exceed 100%. With the used factors this is guaranteed.

<sup>&</sup>lt;sup>13</sup> See https://washdata.org/data/downloads → see column for Household Files (blue icon) → Open tabs for world regions → download appropriate country file, e.g. https://washdata.org/data/country/AUS/household/download for Australia (JMP\_2019\_AUS\_Australia.xlsx) → then see sheet "Wastewater Data".

In the 2019 JMP country files, some data is compiled for 141 countries regarding their wastewater treatment levels.<sup>14</sup> The data can be from various surveys and is usually recent, but can sometimes be 20 years old (especially notable in several South American countries). The data is often not complete or given in a summary fashion, e.g. by providing a rate value for "at least secondary treatment", which adds up WWTPs with one and two stages, but by itself does not characterise either rates separately. Without further data it is also unclear from such an entry whether the country has any tertiary treatment at all or none. A further difficulty in the presented data is the observation that the identical parameters contain an unhelpful mixture of reference bases. For some countries treatment stage rates are given per wastewater *treated*, while for others the rates are per total wastewater *generated*.<sup>15</sup> It is not always clear or implicit which definition is used for a country.

In this situation, the provided data has been manually redacted in the following way. For each country the *most recent* available national rates for either of the three treatment types were isolated (1-stage, 2-stage, 3-stage).<sup>16</sup> From this resulted 46 countries with explicit data for *all three* treatment types. This data was normalised to 100% to consistently obtain the rates per wastewater *treated*, which is only accurate if all three data items are actually present. So for 46 countries statistical data is available representing the employed treatment levels of WWTPs in this country. The 46 countries represent 14% of the world's population.<sup>17</sup>



Fig. 4.7 Employed scheme for three generic types of wastewater treatment levels.

<sup>&</sup>lt;sup>14</sup> Various data can be given: treatment meeting national standards and what those standards are; treatment in plants according to various stages (primary/mechanical, secondary/biological, tertiary, other), data coverage. Also data for faecal sludge treatment plants can be given separately, but only very few countries provide such data.

<sup>&</sup>lt;sup>15</sup> For instance Zimbabwe reports a treatment rate of 50% in primary stage and 50% in secondary stage, referring to wastewater *treated*, because only less than 5% of wastewater generated are treated in Zimbabwe. But for instance Norway reports stage rates (19%, 3%, 32%) summing up to only 54% and referring to wastewater *generated*, since Norway has considerable untreated releases.

<sup>&</sup>lt;sup>16</sup> I.e. any of the two available entries "Secondary" or "Secondary with unknown exposure" was taken to represent the rate of treatments in plants with two treatment stages. The other pertinent entries "Secondary with low exposure", "...with medium exposure", "...with high exposure" were not used by any country. Sometimes a rate for two-stage treatment could be calculated by difference, for instance when entries were given for "At least secondary" and "At least primary". An entry for "tertiary or higher" was used for the three-stage treatment rate, as in this project further treatments e.g. for micro-pollutants play no role. Important is also to heed statistical rates given as zero and distinguish them from unavailable rates.

<sup>&</sup>lt;sup>17</sup> The 46 countries are, in order of increasing GNI: Yemen, Zimbabwe, Egypt, Morocco, Tunisia, Jordan, Albania, Belarus, Serbia, Libya, Turkey, Brazil, Bulgaria, Mauritius, Romania, Croatia, Chile, Poland, Hungary, Latvia, Slovakia, Lithuania, Greenland, Bahrain, Puerto Rico, Portugal, Estonia, Slovenia, Cyprus, Spain, Kuwait, Italy, United Kingdom, France, New Zealand, Israel, Canada, Germany, Netherlands, Sweden, Denmark, Ireland, Iceland, Luxembourg, Norway, Switzerland.



Fig. 4.8 Manually redacted JMP data on wastewater treatment levels in 46 countries, sorted according to Gross National Income GNI. 100% represents the wastewater centrally treated in a country, not all wastewater generated.

The JMP country data list framework would also allow for differentiations for rural and urban territories within a country. Alas only three countries provided rural rates and 9 countries urban rates. This was considered to be too small a foundation to incorporate a differentiation between rural and urban treatment levels. So in the model presented here, no differentiation of treatment is considered in rural or urban WWTPs. Any wastewater treatment—in national, rural or urban territories—is based on the same mixture of treatment stages. In the calculation tool the user can override the values with own data.

#### **Extrapolations for treatment levels**

Although the JMP country data provides statistical information on treatment levels in 46 countries, a lot of countries are not covered. For a particular missing country, it would be best to find pertinent literature data or country statistics, or to estimate parameters based on country-specific treatment conditions. In order to be able to suggest at least *estimates* of treatment levels, a coarse extrapolation is performed here, based on the available 46 countries data and their Gross National Income GNI.

The available data covers 46 countries of various economical wealth with incomes between 860 and 85'000 \$/capita.year. While in the wealthier countries, statistical data is usually more abundant, the expressed goal of the JMP programme is the Sustainable Development Goal of improvement of sanitation and wastewater treatment, and therefore seeks out to capture the status of wastewater treatment also in less economically wealthy countries. Thus, fortunately the range of available data seems wide enough to attempt also extrapolations for low-income countries.

The plot of the rates of treatment stages vs. GNI shows some coarse trends. Plants with only primary stage treatment are frequent in low-income countries, but usually close to absent in high-income countries. Plants with 3 stages are frequent high-income countries, but rare in low-income countries, especially below 10'000 \$/capita.year.





For each of the three treatment levels, tiered median values are calculated and extrapolations are fitted onto that central trend.



Fig. 4.10 Tiered median values of the plots in Fig. 4.9 (solid lines) and derived extrapolations (dashed).

Eq. 4.9

$$\% IST = e^{\lfloor c \cdot GNI^{0.7} \rfloor}$$
, with c = -4.5E-3

where

%1ST = Extrapolation for the share of wastewater treatment in plants with only a primary stage GNI = Gross National Income (\$/capita.year)

Please note the exponent 0.7 to the GNI variable

Eq. 4.10 
$$\% 3ST = 80\% \cdot \left(1 - e^{\left[c \cdot GNI^2\right]}\right)$$
, with c = -4.3E-9

where

%3ST = Extrapolation for the share of wastewater treatment in plants with a three-stage treatment Please note the exponent 2 to the GNI variable

Since 100% refers to the sum of wastewater treated, the difference to 100% must be the remaining share of wastewater treatment in plants with a two-stage treatment (primary and secondary).

Eq. 4.11 
$$\% 2ST = 1 - (\% IST + \% 3ST)$$

where

%2ST = Extrapolation for the share of wastewater treatment in plants with a two-stage treatment

### Uncertainty

As can be seen in Fig. 4.9 the variability of treatment levels is quite diverse and the trends with GNI used for extrapolated estimates are therefore quite uncertain. For extrapolated shares a comparatively large geometric standard deviation GSD is attached.

```
Eq. 4.12 GSD_e = 1 + N \cdot \ln(m), with N = -0.5
where
GSDe = Geometric Standard Deviation of an <u>extrapolated</u> share
m = mean value of share (between 0 and 1)
If m = 0 the GSD is corrected to 100%
```

For share data coming from statistical data or from user overrides the relatively smaller  $GSD_o$  calculated from Eq. 4.8 is used.

The resulting country data compiled for wastewater disposal is shown in Appendix B.

### 5 Modelling concept wastewater treatment

Like with other waste treatment models in ecoinvent (Doka 2003, 2017) the ultimate goal is to obtain process inventories for the disposal of a *specific wastewater*, not merely of an average input of wastewater. Emissions from the treatment as far as possible heed the composition of the specific wastewater under investigation. If a wastewater contains for instance no phosphorus, then no phosphorus emissions will be inventoried for this wastewater.

In order to estimate the burdens specific to a certain waste, a two-step approach has been followed for the disposal inventories in the econvent realm (cf. Doka 2003-IV).

### Working point model

In a first step, a so-called working point model of the wastewater treatment plant is created. The aim of this is to describe the typically observed fate of pollutants during disposal and record the average operation inputs of e.g. energy and auxiliaries. Here the typical, average operation conditions in treatment facilities are determined. The "working point" is that state of operation of a disposal facility that can reasonably called typical or average. A facility can also encompass a mix of several technologies to represent a country or regional average. This forms the basis of the second step.

### Waste-specific model

With the average facility information, the operation flows are attributed to the components in incoming average waste. Components are usually contents of chemical elements (like cadmium, or nitrogen) but can also encompass other parameters like water content or heating value. This second step can be seen in LCA terms as as *multi-input allocation*: emissions and requirements are distributed onto their causing factors. Some flows also might not be allocated to specific elements, but to the waste input as a whole (so called process-specific flows, as opposed to waste-(composition)-specific flows). The result of this allocation is a largely waste-specific model of the disposal process which can now be combined with any arbitrary waste composition to produce a waste-specific inventory of the disposal of that particular waste. This waste-specific inventory then represents an *allocated fraction* of the average working point expenditures attributed to this specific waste.

### 6 Average wastewater composition

To derive transfer coefficients for the working point model, the average wastewater input to treatment must be known. As with any waste also wastewater has considerable compositional vagaries, but on average there are more definite trends and relations.

A very extensive analysis of 69 chemical elements is performed in Vriens et al. (2017). Effluents and sludge of 64 Swiss WWTPs of varying sizes were investigated in detail in 2016. Except for elements going into air—carbon and nitrogen—this allows a back-calculation of the input wastewater, which is simply the sum of sludge and effluent. Vriens et al. (2017:Tab S9) gives the mean wastewater input flows per population-equivalent (p.e.) and day. In the measured WWTPs, the mean wastewater input amount per p.e. and day is 0.5576 m<sup>3</sup>, which can be used to convert the flows per p.e.-day into a wastewater concentration in mass per m<sup>3</sup>, i.e. the sought after concentrations in average wastewater. For definition of average wastewater in the tool input the unit "kg element per kg wastewater" is employed to be consistent with the "kg element per kg wet waste" for solid waste definitions. See chapter 19 'Wastewater composition definition' on page 64.

The wastewater disposal inventory is per  $m^3$  wastewater as a functional unit, and the employed wastewater input composition will be scaled up by a factor 1000.

| е  | mg e/m³ WW in | comment | е  | mg e/m³ WW in | comment |
|----|---------------|---------|----|---------------|---------|
| Li | 9.0204        |         | Cd | 0.25107       |         |
| Be | 0.030486      |         | In | 0.014347      |         |
| В  | 55.593        |         | Sn | 3.7839        |         |
| Na | 64560         |         | Sb | 1.2553        |         |
| Mg | 8069.9        |         | Te | 0.035866      |         |
| AI | 10.581        |         | Cs | 0.41246       |         |
| Si | 961.22        |         | Ва | 55.593        |         |
| Р  | 4483.3        |         | La | 2.0444        |         |
| S  | 15602         |         | Ce | 5.0392        |         |
| К  | 12374         |         | Pr | 0.23313       |         |
| Ca | 39453         |         | Nd | 0.86079       |         |
| Sc | 1.614         |         | Sm | 0.23313       |         |
| Ti | 25.107        |         | Eu | 0.068146      |         |
| V  | 4.4833        |         | Gd | 0.62766       |         |
| Cr | 6.6353        |         | Tb | 0.025107      | 2       |
| Mn | 57.386        |         | Dy | 0.1345        |         |
| Fe | 3355.7        | 1       | Ho | 0.025107      |         |
| Ni | 4.6626        |         | Er | 0.07532       |         |
| Co | 1.3988        |         | Tm | 0.01076       |         |
| Cu | 53.8          |         | Yb | 0.089666      |         |
| Zn | 136.29        |         | Lu | 0.01076       |         |
| Ga | 0.52006       |         | Hf | 0.071733      |         |
| Ge | 0.23313       |         | Та | 0.046626      |         |
| As | 0.68146       |         | W  | 0.3228        |         |
| Se | 0.73526       |         | Re | 0.0034636     | 3       |
| Rb | 11.657        |         | Os | 0.016441      | 3       |
| Sr | 288.72        |         | lr | 0.0029142     | 3       |
| Y  | 0.4304        |         | Pt | 0.0073497     | 3       |
| Zr | 2.5644        |         | Au | 0.025107      |         |
| Nb | 0.34073       |         | TI | 0.04842       |         |
| Мо | 1.9906        |         | Pb | 6.169         |         |
| Ru | 0.012044      | 3       | Bi | 0.62766       |         |
| Rh | 0.033178      | 3       | Th | 0.14347       |         |
| Pd | 0.013105      | 3       | U  | 0.86079       |         |
| Aa | 1.7754        |         |    |               |         |

## Tab. 6.1Mean concentrations in untreated wastewater derived from Vriens et al. (2017). Mostly calculated from their<br/>Tab. S9 (see text and footnotes for details).

Wastewater input is back-calculated by (Vriens et al. 2017) from flows in sludge and in effluent. The iron content in wastewater input was corrected here by subtracting the iron added during phosphorus precipitation in the third stage of the WWTPs. 45% of the phosphorus in wastewater is assumed to be removed by precipitation, leading to FePO<sub>4</sub> in the sludge, adding to the iron content in sludge. Correcting this leads to a reduction of the Fe content in wastewater by a factor 0.48.

2 The terbium content was reduced here by a factor 1000 over the original. The amount given in Vriens et al. (2017:Tab S9) was at odds with data calculated from sludge and effluent flows, as well as the nationwide flux in Tab S9.

3 No data given in Vriens et al. (2017:Tab S9). Amount calculated by adding the median concentration amount in WWTP effluent and the amount from 0.0002611 kg sludge per litre wastewater, being the median sludge production in the measured 64 WWTPs calculated from (Vriens et al. 2017:Tab S1). If median concentration amounts were given as below detection limit, 71% of the detection limit was used.

#### Organic carbon in untreated wastewater

1

From a survey of recent annual reports of Swiss WWTPs, a geometric mean of 124 mg/l organic carbon (TOC) is established. Hydrogen and oxygen in organic matter are derived from typical average molar ratios of H/C of 1.47 and O/C of 0.48, based on measurements of sewage solids and liquids from (Roskosch & Heidecke 2018, Maizel & Remucal 2017, Munoz et al. 2017, Fakkaew et al. 2018, Onabanjo 2016, EC 2001,von Raczeck 1993). This results in 15.19 mg H and 79.37 mg O per litre untreated wastewater.

For BOD in average wastewater a geometric mean of 218.1 mg/L is found in the same survey, and 399.7 mg/L for COD. From these average values typical ratios for COD/TOC 3.22, for BOD/TOC of 1.7587 can be derived, which can be used to convert BOD and COD data into a TOC figure (cf. chapter 19 'Wastewater composition definition' on page 64).

### Nitrogen in untreated wastewater

A value of 31 mg N/l is calculated from a Swiss total nitrogen flow in untreated wastewater of 47'900 metric tonnes for the year 2020 (Heldstab et al. 2013:49) and a treated annual wastewater volume in Switzerland of 1544 million  $m^{3.18}$ 

### Mercury in untreated wastewater

Surprisingly, a missing element in the very large scope of investigated chemical elements in (Vriens et al. 2017) is mercury. Data is available from a recent study (Berg et al. 2021). The median amount of total Hg in untreated wastewater going into Swiss 28 WWTPs measured in 2017, was 0.58 microgram per m<sup>3</sup> (Berg et al. 2021:Fig 3a). In the same study also a transfer coefficient to sludge of 96% is specified, which is used in the model.

### 7 Emissions from sewers

Sewers are infrastructures to transport wastewater away from the wastewater producing location. This is commonly achieved by free flow due to natural inclination and rarely pumps are required to overcome topographies. In poorly planned, constructed or maintained sewers wastewater can become stagnant, i.e. motionless. Under these circumstances it is possible that wastewaters start to degrade in sewers and even to become anaerobic and emit methane.

IPCC (2019:20) has a generic calculation procedure for methane emissions from "stagnant, open and warm sewers", i.e. largely motionless wastewater in *open* sewer ditches in *warm* climates. For these conditions IPCC suggests a generic methane emission of approximately 58 g per  $m^3$  average wastewater.<sup>19</sup> IPCC estimates that 50% of the degraded carbon in stagnant sewers is emitted as methane (MCF=0.5). These figures imply that in stagnant sewers about 70% of the carbon in wastewater is degraded and emitted (half as CH<sub>4</sub> and half as CO<sub>2</sub>).<sup>20</sup> This proportion appears rather large. A stagnant sewer in the model of IPCC appears to be largely a *dysfunctional* sewer where wastewater is *stored* rather than transported. Indeed the average emissions factors given for stagnant sewers in IPCC are the same as those for a "communal latrine (with many users) in dry climate with ground water table lower than latrine" (IPCC 2019:21). The IPCC calculation does not heed the length of stagnant sewer sections or a hydraulic retention time, which would be parameters influencing

<sup>&</sup>lt;sup>18</sup> Calculated from 514 L per cap.day (Binggeli et al. 2011:8) and 8.4 million inhabitants and a 98% sewer connection rate for the year 2020.

<sup>&</sup>lt;sup>19</sup> IPCC gives two emissions factors for stagnant sewers (0.3 kg CH<sub>4</sub>/kg BOD and 0.125 kg CH<sub>4</sub>/kg COD). With the average concentration of BOD and COD in Swiss wastewater of 218.1 and and 399.7 mg/L, emissions of 65 and 50 g CH<sub>4</sub> per m<sup>3</sup> are calculated.

<sup>&</sup>lt;sup>20</sup> 58 grams of CH<sub>4</sub> are 43 grams of carbon (=58/16\*12). Another 43 grams of carbon are emitted as CO<sub>2</sub>. The removed 86 grams of carbon are 70% of the total organic carbon (TOC) contained in average wastewater of 124 g/m<sup>3</sup> (for Swiss average wastewater).

how long wastewater is exposed to anaerobic sewer conditions. Also the IPCC formulas apply only for stagnant sewers which are also open and warm, while in well flowing sewers zero default emissions are given. It is unclear from this, which default emissions should be applied for stagnant, but *closed* sewers or for stagnant sewers in *colder* climates. IPCC (2019:7) mentions that solar heating in open sewers increases likelihood of emissions in stagnant sewers, but does not specify "warm sewers" with a climate zone or a temperature.

To estimate the frequency of stagnant conditions in a sewer network it would be important to calculate or estimate the velocity distribution of wastewater transport over a typical year and this would require parameters like the capacity of sewer, temporal distribution of wastewater input, distribution of hydraulic retention times, frequency of large leakages in sewer (and loss of volume leading to slow flow), topography and downtimes of any sewer pumps. This modelling can not be performed on a country level in the present model.

No assumptions can be made in the present model, which parts of sewer networks in which countries experience stagnant conditions or how frequently. Emissions from sewers are therefore neglected for the time being. I.e. all sewers are assumed to be functional and non-stagnant.

### 8 Elimination in wastewater treatment

Several pathways to eliminate pollutants from wastewater exist. In the model the frequently used stages of wastewater treatment are considered. In an preliminary step grit and accompanying waste items like paper and plastic are removed by sieving and sedimentation. In the first mechanical stage a part of solids are removed by sedimentation. In the second biological stage part of the carbon is converted to gaseous  $CO_2$  and nitrogen to gaseous  $N_2O$  and  $N_2$ . Also on this stage sludge is removed that has formed from biomass growth in wastewater (so called excess sludge). In the third stage (chemical) phosphorus removal is enhanced by addition of precipitation agents.

In the following sections the transfer coefficients for various pollutants in the three stages are described.

### 8.1 Removal of raw sludge

Raw sludge is the sum of sludges from all three stages (mechanical, biological, chemical). The transfer coefficients to sludge can be derived from extensive measurements on elemental content in treatment sludge and WWT effluent in Vriens et al. (2017). Using the median sludge mass generation of the investigated 64 WWTPs of 0.2611 kg raw sludge dry mass per m<sup>3</sup> wastewater, the transfer coefficients to sludge can be calculated.<sup>21</sup> This calculation is valid for elements not eliminated into air, i.e. where only sludge or treated effluent are output streams. For iron, the iron added with precipitation agents in the third treatment stage needs to be heeded, reducing the transfer coefficient from 99.901% to 99.866%.

<sup>&</sup>lt;sup>21</sup> In the data from (Vriens et al. 2017) concentration data given as "below detection limit" was replaced with 71% of the detection limit. This affects only a few elements in concentrations below the microgram per litre level in the effluent.

### 8.1.1 Additional transfer coefficients

### Carbon

The transfer coefficient of carbon to sludge is set to 69.9%, which results in a total carbon elimination (including to air) of 94.4%, which is the median average elimination in WWTPs from a literature survey.

### Hydrogen

The hydrogen considered here is the hydrogen in organic compounds. The transfer coefficient to sludge is derived from the carbon diverted to sludge and a H/C ratio in sludge of 0.1359 by weight, based on measurements of sewage sludges in (Roskosch & Heidecke 2018, EC 2001, von Raczeck 1993, Munoz et al. 2017, Onabanjo 2016). For average wastewater this results in a transfer coefficient of 77.56%.

### Oxygen

The oxygen considered here is the oxygen in organic compounds. The transfer coefficient to sludge is derived from the carbon diverted to sludge and a O/C ratio in sludge of 0.6286 by weight, based on measurements of sewage sludges in (Roskosch & Heidecke 2018, EC 2001, von Raczeck 1993, Munoz et al. 2017, Onabanjo 2016). For average wastewater this results in a transfer coefficient of 68.65%

### Nitrogen

The transfer coefficient of nitrogen to sludge is set to 26.3%, which results in a total nitrogen elimination (including to air) of 47%, which is the average nitrogen elimination in Swiss WWTPs (Heldstab et al. 2013:49).

### **Phosphorus**

For phosphorus the total elimination is set to 92% based on measurements in European WWTPs (EEA 2020) and the elimination in stages 1+2 only is set to 50%. Phosphorus is the only element where the elimination in a three stage plant is *not* equal to the elimination in a two stage plant.

### Mercury

A transfer coefficient of mercury to sludge of 96% is adopted from (Berg et al. 2021).

| е  |          | е  |          |
|----|----------|----|----------|
| Li | 12.756%  | Cd | 97.079%  |
| Be | 98.677%  | In | 65.975%  |
| В  | 8.0065%  | Sn | 99.06%   |
| Na | 0.79698% | Sb | 43.924%  |
| Mg | 8.0065%  | Те | 93.635%  |
| AI | 46.534%  | Cs | 56.625%  |
| Si | 55.898%  | Ва | 85.475%  |
| Р  | 50%      | La | 99.987%  |
| S  | 4.1702%  | Ce | 99.992%  |
| К  | 5.2985%  | Pr | 99.979%  |
| Ca | 20.704%  | Nd | 99.941%  |
| Sc | 49.804%  | Sm | 97.998%  |
| Ti | 92.972%  | Eu | 96.311%  |
| V  | 97.589%  | Gd | 66.196%  |
| Cr | 98.326%  | Tb | 99.851%  |
| Mn | 95.942%  | Dy | 99.847%  |
| Fe | 99.866%  | Но | 99.851%  |
| Ni | 53.083%  | Er | 99.745%  |
| Со | 85.9%    | Tm | 99.618%  |
| Cu | 95.157%  | Yb | 98.385%  |
| Zn | 92.229%  | Lu | 99.683%  |
| Ga | 90.444%  | Hf | 88.739%  |
| Ge | 92.092%  | Та | 94.842%  |
| As | 67.625%  | W  | 80.479%  |
| Se | 71.623%  | Re | 1.6057%  |
| Rb | 21.031%  | Os | 0.67652% |
| Sr | 18.177%  | lr | 2.5446%  |
| Y  | 99.405%  | Pt | 60.393%  |
| Zr | 92.157%  | Au | 63.97%   |
| Nb | 97.761%  | TI | 78.621%  |
| Мо | 62.561%  | Pb | 99.499%  |
| Ru | 8.6712%  | Bi | 99.653%  |
| Rh | 12.592%  | Th | 98.219%  |
| Pd | 45.823%  | U  | 63.8%    |
| Ag | 99.405%  |    |          |

Tab. 8.1 Transfer coefficient to raw sludge in a two-stage WWTP, based on data from (Vriens et al. 2017).

### 8.2 Transfer coefficients primary treatment

### Elimination to primary raw sludge

The composition of traces in primary sludge and secondary sludge is given in (Guillemet et al. 2008). The compositions are—within the variability ranges—very similar. This implies that sludge transfer coefficients to primary sludge and to secondary sludge are essentially proportionate to each other. For this reason the transfer coefficients to primary sludge are taken to be a constant fraction of the total raw sludge.

For the transfer coefficients to primary sludge a fraction of 30% of the transfer coefficients of primary and secondary sludge is used (Kalbar et al. 2018:33). I.e. 30% of the values given in Tab. 8.1 are the transfer coefficients to primary raw sludge. This determines the elimination in 1-stage WWTPs.

### 8.3 Transfer coefficients secondary treatment

### Elimination to excess sludge

The remainder 70% of the values given in Tab. 8.1 are the transfer coefficients to secondary sludge (excess sludge), while 30% are eliminated to primary raw sludge.

### Carbon to air as CO<sub>2</sub>

During aeration in the biological stage, carbon in wastewater is partially metabolised to  $CO_2$ , which is emitted to air. In the model this transfer coefficient is set to 24.5%. Together with the 69.9% elimination of carbon to raw sludge a total carbon elimination for a two and three stage plant of 94.4% results.

### Nitrogen to air as N<sub>2</sub> and N<sub>2</sub>O

During aeration in the biological stage, carbon in wastewater is partially metabolised to molecular nitrogen,  $N_2$ , and emitted to air. A fraction of 20.7% if the nitrogen input in wastewater is assumed to be removed via this route. With this transfer to air, the complementary transfer to sludge results in an appropriate N/C ratio of 0.1 in the generated excess sludge.

During this denitrification process also some gaseous nitrous oxide ( $N_2O$ ) can be formed, which is a greenhouse gas and depletes stratospheric ozone. In the model 0.68% of the nitrogen removed in denitrification to air is assumed to be  $N_2O$ -N (Doka 2003-IV, based on Maurer 2002).

For an average wastewater with 31 g  $N/m^3$  and a TK<sub>N</sub> to air of 20.7%, the N<sub>2</sub>O emissions are 0.137 g/m<sup>3</sup> and around 28 g per capita and year. IPCC gives a range of 3–60 g per capita.year (Hobson et al. 2000), which fits well with amount calculated here.

### 8.4 Transfer coefficients tertiary treatment

The tertiary treatment stage removes phosphorus from wastewater by adding precipitation agents. In the model, a third stage removes 42% of the phosphorus of the initial untreated wastewater. The first two stages already remove 50% of the phosphorus. Thus the total elimination of a three stage plant in the model is 92%.

The third stage removes phosphorus as  $FePO_4$ . The chemical sludge removed in the third stage is added to the raw sludge flow from the primary and secondary stages and therefore adds iron to the sludge. Per kg of phosphorus removed to sludge in the third stage 1.8 kg of iron are added. The precipitation agent is added in excess. The excess amount of the agent is added to the WWT effluent, leading to increased amounts of iron and sulfur.

Inventoried demand of precipitation agents is described in chapter 11.1 'Phosphate precipitation' on page 37.

### 8.5 Synopsis transfer coefficients wastewater treatment

| Element | Transfer       | Transfer          | Transfer         | Transfer        | Transfer           |
|---------|----------------|-------------------|------------------|-----------------|--------------------|
|         | coefficients   | coefficients      | coefficients to  | coefficients    | coefficients final |
|         | primary sludge | secondary         | air in secondary | chemical sludge | effluent           |
| 0       | 00 5000/       |                   | stage            |                 | 01.0400/           |
| 0       | 20.596%        | 48.056%           | -                | _               | 31.348%            |
| н       | 23.268%        | 54.291%           | -                | -               | 22.441%            |
| C       | 20.97%         | 48.93%            | 24.5%            | -               | 5.6%               |
| S       | 1.2511%        | 2.9191%           | -                | -               | 95.83%             |
| Ν       | 7.89%          | 18.41%            | 20.7%            | -               | 53%                |
| Р       | 15%            | 35%               | _                | 42%             | 8%                 |
| В       | 2.402%         | 5.6046%           | _                | -               | 91.993%            |
| CI      | -              | -                 | -                | -               | 100%               |
| Br      | -              | -                 | -                | -               | 100%               |
| F       | -              | -                 | -                | -               | 100%               |
| 1       | -              | -                 | _                | -               | 100%               |
| Ag      | 29.822%        | 69.584%           | _                | -               | 0.59468%           |
| As      | 20.287%        | 47.337%           | -                | -               | 32.375%            |
| Ва      | 25.643%        | 59.833%           | _                | -               | 14.525%            |
| Cd      | 29.124%        | 67.955%           | _                | _               | 2.9213%            |
| Со      | 25.77%         | 60.13%            | _                | _               | 14.1%              |
| Cr      | 29.498%        | 68.828%           | _                | -               | 1.6737%            |
| Cu      | 28.547%        | 66.61%            | _                | -               | 4.8431%            |
| Hq      | 28.8%          | 67.2%             | _                | _               | 4%                 |
| Mn      | 28.783%        | 67.16%            | _                | _               | 4.0578%            |
| Мо      | 18.768%        | 43.793%           | _                | _               | 37.439%            |
| Ni      | 15.925%        | 37.158%           | _                | _               | 46.917%            |
| Pb      | 29.85%         | 69.649%           | _                | _               | 0.50141%           |
| Sb      | 13.177%        | 30.747%           | _                | _               | 56.076%            |
| Se      | 21 487%        | 50 136%           | _                | _               | 28.377%            |
| Sn      | 29 718%        | 69.342%           | _                | _               | 0.94024%           |
| V       | 29 277%        | 68.312%           | _                | _               | 2 4114%            |
| 7n      | 27 669%        | 64 56%            | _                | _               | 7 7711%            |
| Re      | 29.603%        | 69.074%           | _                | _               | 1 3228%            |
| Sc      | 1/ 0/1%        | 34 863%           | _                | _               | 50 196%            |
| Sr      | 5 45229/       | 10 704%           | _                | _               | 91 9220/           |
| ті      | 07 0000/       | 65 09%            | _                | _               | 7 0270%            |
|         | 27.092%        | 00.00%<br>EE 02E% | —                | -               | 7.0279%            |
|         | 23.580%        | 55.035%           | -                | _               | 21.379%            |
| vv      | 24.144%        | 56.335%           | -                | _               | 19.521%            |
| 5       | 16.769%        | 39.129%           | -                | _               | 44.102%            |
| Fe      | 29.96%         | 69.906%           | _                | -               | 0.13365%           |
| Ca      | 6.2112%        | 14.493%           | -                | _               | 79.296%            |
| Al      | 13.96%         | 32.574%           | -                | _               | 53.466%            |
| К       | 1.5896%        | 3.709%            | -                | -               | 94.701%            |
| Mg      | 2.402%         | 5.6046%           | -                | -               | 91.993%            |
| Na      | 0.23909%       | 0.55789%          | -                | -               | 99.203%            |

### 9 Sludge digestion

### 9.1 Country-specific digestion rates

Country data on occurrence of digestion of wastewater treatment sludge and digester gas utilization is compiled in (Munoz 2019).

Two parameters are generated from the given data.

- 1. Share of raw sludge into anaerobic digestion, %dig
- 2. Share of digester gas into energy utilisation, %CHP (combined heat and power)

The first parameter %dig refers to which fraction of the generated raw sludge of the WWTP is digested anaerobically, either on-site or—usually for smaller plants—at another facility. The remainder not going into a digestion is assumed to go into sludge disposal undigested, i.e. without generating any digester gas.

The second parameter refers to the fate of the generated digester gas going into an energy utilization frequently an on-site conversion into heat and/or electricity (CHP). The remainder of the digester gas is assumed to be flared without energy use. A third option would be upgrading of digester gas (~65 volume% methane, ~35 V% CO<sub>2</sub>) into biomethane (~100% methane) and further utilisation in third party heating or transport combustion engines, but this is not regarded in the present model. As the utilised digester gas reduces on-site energy demand of the WWTP, the advantage of digester gas energy utilisation is included in the inventory.



Fig. 9.1 Scheme of the parameters describing the fate of the raw sewage sludge generated in the wastewater treatment plant, which are employed in the model presented here. Raw sludge is either digested anareobically or not. Remaining digested sludge mass joins the disposal fate for sewage sludge. Biogas generated in digestion can be utilized energetically (CHP) or go to a flare without energy utilisation.

The available data covers 69 countries, which encompass approximately 82% of the world's population. Some populous countries which have significant shares of municipal wastewater treatment are missing, like Tunisia, Jordan, Belarus, or the United Arab Emirates. To avoid data gaps in the assessment, extrapolations for the two parameters %dig and %CHP were derived based on available data plotted against Gross National Income (GNI). These provide at least some qualified estimates, although actual statistical country data would be preferable.





Based on the central trend as observed from the available country data versus the Gross National Income, an extrapolation for %dig is derived, which is an exponential function:

Eq. 9.1  $\% dig = 1 - e^{[c \cdot GNI]}$  with c = -1E-5 where % dig = A country's share of WWTPs with anaerobic digestion GNI = Gross National Income (\$/capita.year)

The available data for %CHP plotted against GNI data is shown in Fig. 9.3. The central trend of the median shows unsurprisingly the more frequent use of CHP in countries with larger GNI. The spike at low GNI (~2300) is based on two data points and not very reliable. The observable dip in %CHP in countries with GNI >50'000 \$/cap.yr is possibly an effect of increased conversion of digester gas being converted to a biomethane fuel product.



Fig. 9.3 Plot of a country's share of sewage sludge anaerobic digestion with energy utilization (%CHP) against the Gross National Income GNI (dots), the central trend as the tiered median values (solid line) and the derived extrapolation (dashed line).

For missing data a simple bi-value approximation was made, where for any country with a GNI over 7000 \$/cap.yr a fixed %CHP of 70% is assumed, and 0% for countries with lower GNIs.

0

Eq. 9.2 
$$\% CHP = \begin{cases} if GNI < 7000 : \% CHP = 0\\ if GNI \ge 7000 : \% CHP = 70\% \end{cases}$$

where

%CHP= A country's share of sewage sludge anaerobic digestion with energy utilization GNI = Gross National Income (\$/capita.year)

#### 9.2 Modelling of sludge digestion

### Transfer coefficient carbon to digester gas

During digestion it is assumed that 60.3% of the carbon in input sludge is transferred to digester gas. The methane content in digester gas is assumed to be 35 V%, and 65 V% CO<sub>2</sub>. Thus 1 kg of carbon in sludge leads to 0.7739 kg methane and 0.5226 kg <sub>CO2</sub>, heeding the weight increases of the compounds.

#### Methane leakage

Kägi (2019) inventoried a sewage sludge digestion process with a digester gas leakage rate of 0.75%.<sup>22</sup> This leakage is applied here to derive air emissions of uncombusted methane CH<sub>4</sub>.<sup>23</sup> The carbon balance is heeded: carbon in emitted methane is subtracted from the carbon emitted as CO<sub>2</sub> after combustion.

### Transfer coefficient nitrogen to digester gas

Nitrogen in sludge is mostly associated with organic matter of the sludge. Nitrogen can go to digester gas as gaseous ammonia (NH<sub>3</sub>) or elemental nitrogen gas  $N_2$ . The N/C ratio in raw and digested sludge is roughly constant and therefore the total nitrogen removal must be in proportion to the carbon removal. The nitrogen transfer coefficient is therefore the same as the carbon transfer coefficient (60.3%). Most of the nitrogen in digester gas will be elemental  $N_2$ . Some nitrogen will be in reactive ammonia NH<sub>3</sub>. A literature source indicates an emission factor of digester gas burning of 732.5 mg N per m<sup>3</sup> digester gas (Notter & Graf 2016).<sup>24</sup> This flow refers to nitrogen in a reactive form, which will later lead to NO<sub>x</sub> emission in burning.<sup>25</sup> In the working point model a share of 1.51% NH<sub>3</sub>-N in total nitrogen in digester gas results in 732.5 mg N per m<sup>3</sup> digester gas. The complement of 98.49% is converted to unreactive elemental N<sub>2</sub>.

<sup>22</sup> In the comment to the methane exchange. This is a *weight*-percentage rate, referring to an emission of 0.003366 kg methane from 1 m<sup>3</sup> of biogas containing 0.449 kg methane.

<sup>23</sup> The leakage could equally be applied to NH<sub>3</sub>, H<sub>2</sub>S, and CO<sub>2</sub>. For CO<sub>2</sub> the leakage emission will not be different from the emission after an energy utilization or flare. Emissions of  $NH_3$  and  $H_2S$  are converted in the inventory to  $NO_x$  and  $SO_2$ , reflecting the spontaneous atmospheric oxidation reactions these pollutants would undergo rather promptly, and also aiding LCIA, as some LCIA methods don't cover NH<sub>3</sub> and H<sub>2</sub>S, but NO<sub>x</sub> and SO<sub>2</sub>.

<sup>24</sup> Figure 18 of (Notter & Graf 2016) indicates 139 tons of NOx are generated from burning of 1.4 petajoules of sewage gas. Using those study's own parameters (heating value 20.2 MJ/kg, Density 1.2 kg/m<sup>3</sup>, p.54) this can be converted to 732.46 mg N/m<sup>3</sup> digester gas (=  $139 \cdot 10^9 / (1.4 \cdot 10^9 / (20.2 \cdot 1.2)) / (14 + 2 \cdot 16) \cdot 14$ ).

<sup>25</sup> This approach neglects formation of thermal NO<sub>x</sub> from N<sub>2</sub> in combustion air.

### Transfer coefficient sulfur to digester gas

Sulfur can go to digester gas as gaseous hydrogen sulfide,  $H_2S$ . Treyer (2018) gives a value of 300 mg Sulfur per m<sup>3</sup> biogas from sewage sludge or manure. In the working point model for the average WWTP operation a transfer coefficient for sulfur of 4.69% during digestion leads to that concentration. During digester gas combustion, the sulfur in digester gas will be emitted as sulfur dioxide SO<sub>2</sub>.

#### Volatile (semi-)metals to digester gas

Certain metals can form volatile metalorganic compounds in anaerobic environments, for instance trimethyl antimony Sb(CH<sub>3</sub>)<sub>3</sub>. Based on measurements by Feldmann & Hirner (1995), transfer coefficients to digester gas were established in (Doka 2003:29) for As, Cd, Hg, Pb, Sb, and Sn. These transfer coefficients are used in the model to calculate transfer of metals to digester gas. Upon gas utilisation or flaring the metals are assumed to be emitted to air.

#### Tab. 9.1 Transfer coefficient of volatile elements to digester gas.

| Element | Transfer coefficient sludge to digester gas |
|---------|---------------------------------------------|
|         | elaage te algeetel gae                      |
| As      | 0.13%                                       |
| Cd      | 0.000045%                                   |
| Hg      | 0.00024%                                    |
| Pb      | 0.0000037%                                  |
| Sb      | 0.01%                                       |
| Sn      | 0.000017%                                   |

### 10 Digester gas utilization

In the model presented here, digester gas produced can either be converted on-site for energy or be flared without energy utilisation (see previous chapter). The share of energy utilisation can be overwritten by the user. The possibility of upgrading digester gas to biomethane and off-site utilisation in gas-consuming processes (heating, road transport, or other) is not included for simplicity's sake.

In the energy utilisation a conversion to electricity and/or useful heat is possible. The user can set the gross efficiencies of the generation of those energy products individually. The produced energy is used by the WWTP internally to reduce any external energy input for the wastewater treatment. This means that the inventory will not include any energy *outputs*, but the energy inputs required to treat a specific wastewater will be *reduced* in accordance to the wastewater's contents transferred to energy-rich digester gas (carbon in methane, sulfur in hydrogen sulfide, nitrogen in ammonia) and the average utilization of that digester gas. Even in wastewaters with very high carbon loads and therefore large digester gas energy, the net energy balance is negative, since wastewaters with large carbon loads also require large amounts of energy to process for the aerobic treatment stage and sludge handling.
## 10.1 Digester gas combustion emissions

Emissions are calculated waste-specifically from chemical elements. E.g. if wastewater contains sulfur, some of it ends up in digester gas and will lead to  $SO_2$  emissions. If a wastewater contains no sulfur, then no  $SO_2$  emissions will be attributed from digester gas combustion.

As noted in section 'Transfer coefficient nitrogen to digester gas' on page 35, only 1.51% of the nitrogen in digester gas is assumed to be converted to NO<sub>x</sub> air emissions, while the remainder is emitted as elemental N<sub>2</sub>.

The volume of digester gas generated is calculated waste-specifically for the components ending up in digester gas. A specific particulate emission factor is attached to the produced and combusted volume of digester gas. Per m<sup>3</sup> digester gas combusted or flared and emission of 46.75 mg  $PM_{<2.5}$  is inventoried. This is based on Swiss data for sewage gas motors (Notter & Graf 2016).<sup>26</sup>

## 10.2 Energy production efficiencies

In Switzerland 271 municipal wastewater treatment plants produced 433 TJ of electricity, 780 TJ of usable heat, and 665 TJ of biomethane from 2295 TJ digester gas in 2019 (BFE 2020:36). Disregarding the biomethane production (as this utilisation is not heeded in this model), this results in gross efficiencies of 26.56% and 47.85% for electricity and heat.<sup>27</sup>

# 11 Treatment auxiliaries

## 11.1 Phosphate precipitation

In the third stage of a WWTP some of the phosphorus still remaining in solution after the first two stages is precipitated by adding precipitation chemicals. Here iron sulphate (FeSO<sub>4</sub>) is considered. Addition of FeSO<sub>4</sub> precipitates much of phosphorus as FePO<sub>4</sub>, but it is usually dosed in excess.

From a literature survey of current Swiss WWTPs a typical mean value of  $57.7 \text{ g FeSO}_4 \text{ per m}^3$  wastewater treated is found. In the working point model 1.88 g of phosphorus is removed in the third stage. So per kilogram of phosphorus removed in the third stage, an amount of 30.65 kg of FeSO<sub>4</sub> is required.

This specific demand is employed to derive a *waste-specific*  $FeSO_4$  *demand* in the inventory, depending on the conditions that a wastewater contains phosphorus, that wastewater is sewered to any WWTPs and whether those WWTPs have a third treatment stage.

<sup>&</sup>lt;sup>26</sup> In Notter & Graf (2016: Fig 18) an annual emission of 2.7 tonnes of PM from the combustion of 1.4 Petajoule sewage digester gas are given. Notter & Graf use a LHV 20.2 MJ/kg and density 1.2 kg/m<sup>3</sup> digester gas, and thus 46.75 mg PM/m<sup>3</sup> = 2.7 /(1.4/20.2/1.2).

<sup>&</sup>lt;sup>27</sup> 26.56% = 433/(2295-665); 47.85% = 780/(2295-665);

# 11.2 Sludge flocculation

To aid secondary sludge dewatering, a flocculant is added. For the model a polymer flocculant of poylacrylamide is considered.<sup>28</sup> From a literature survey of current Swiss WWTPs a typical mean value of 2.63 g flocculant per m<sup>3</sup> wastewater treated is found. In the working point model 139 g of secondary sludge dry matter (DM) is generated. Thus the flocculant use is 18.86 kg per kilogram of DM.

This specific demand is used to calculate a *waste-specific flocculant demand* in the inventory, depending on the conditions that a wastewater is sewered to any WWTPs and the secondary sludge generated in them.

The flocculant composition  $(C_3H_5NO)_n$  is added to the generated sludge composition. In that way, even specific wastewaters without any carbon can generate sludges with carbon and subsequently also digester gas.<sup>29</sup>

# **12** Treatment energy demand

The energy demand for a three-stage WWTP is derived from a literature survey of annual reports of Swiss WWTPs for the years 2010–2019. The geometric mean of total electricity demand is 0.333 kWh per m<sup>3</sup> wastewater treated. From the same survey the typical relative shares of the energy demand for different parts of the facility were derived.

The electricity demands in the working point model are allocated to various flows to derive specific electricity demands. For instance the electricity demand in the biological stage is largely associated with pumping air into the pools for aerobic degradation. This electricity demand is therefore allocated to the actual oxygen uptake required for degradation.

| Contribution         | Share of<br>electricity<br>demand | Allocand                                  | Electricity demand,<br>in kWh per allocand unit |
|----------------------|-----------------------------------|-------------------------------------------|-------------------------------------------------|
| 1st stage mechanical | 17.23%                            | m <sup>3</sup> wastewater input           | 0.0574                                          |
| 2nd stage biological | 56.65%                            | kg oxygen uptake in 2 <sup>nd</sup> stage | 1.3278                                          |
| Sludge digestion     | 12.28%                            | kg raw sludge dry mass into<br>digestion  | 0.1796                                          |
| Sludge dewatering    | 8.10%                             | kg final sludge dry mass                  | 0.2376                                          |
| Other                | 5.74%                             | m <sup>3</sup> wastewater input           | 0.01912 *                                       |

| Tab. 12.1 | Electricity | / demand | calculation | for | WWTPs |
|-----------|-------------|----------|-------------|-----|-------|

For 1-stage WWTP this contribution is multiplied by a factor 0.233, representing the lower expenditure expected in 1-stage plants (derived from shares for 1<sup>st</sup> and 2<sup>nd</sup> stage, 0.233 = 17.23% / (17.23%+56.65%)

<sup>&</sup>lt;sup>28</sup> Poylacrylamide has the formula  $(-CH_2-CH(CO-NH_2)-)_n$ 

<sup>&</sup>lt;sup>29</sup> The flocculant polymer is assumed to contribute fossil carbon. This addition of fossil carbon can influence the properties of the inventoried emissions. For instance TOC emissions to water after the WWT have the share of biogenic carbon specified by the user for the wastewater. But in the inventory also further downstream TOC emissions to water from the incineration of sewage sludge can be added and the sludge can have a different share of biogenic carbon due to the flocculant. The appropriate share of biogenic carbon in the inventoried TOC emission depends on the weighted mean of the contributing parts. This calculation is performed in the model and the resulting properties are written into the EcoSpold2 inventories.

The geometric mean of total heat demand is 0.19148 kWh per m<sup>3</sup> wastewater treated. The vast majority of the heat demand (90%) is associated with sludge digestion. This part of the heat demand is allocated to the raw sludge dry mass into digestion. In the working point model this leads to a specific heat demand of 2.725 MJ per kg dry matter into digestion. The remaining 10% of the heat demand are simply allocate to each m<sup>3</sup> of wastewater input, leading to 0.06893 MJ per m<sup>3</sup> wastewater.

## 12.1 Economy of scale

In the present model, the wastewater treatment plants are discerned into urban, rural, and national average plants for inventories with the corresponding territory setting, see chapter 4.2.1 'National, urban and rural wastewater fate data' on page 14. WWTPs display an economy-of-scale trend that larger plants have lower energy demand per m<sup>3</sup> treated. The question arises, whether for rural plants a larger energy demand should be considered in the model.

Fig. 12.1 shows the specific energy demands from 152 WWTPs in the Canton of Vaud (Switzerland) for 2017 versus their treated daily volumes (DIREV 2018).



Fig. 12.1 Plot of the specific electricity demands per m<sup>3</sup> treated from 152 WWTPs in the Canton of Vaud (Switzerland) for 2017 versus their respective treated daily volumes (derived from data in DIREV 2018).

The line in Fig. 12.1 represents the tiered median of the data. A trend of larger electricity demands in smaller plants is visible, but this only sets in below a daily volume of  $1000 \text{ m}^3$ . The generic rural plant in the present model is much larger (4400 m<sup>3</sup>/day, 1.6 Mio m<sup>3</sup>/year) and thus will have on average the same electricity demand as the larger urban plant. No economy-of-scale for energy demand is therefore considered in the present model.

# 13 Water balance in treatment plant

In the ecoinvent database water losses to air are inventoried. These can be pertinent in Impact Assessment, for instance in consumptive water losses. For wastewater treatment one would surmise that most wastewater in a treatment plant is ultimately released to a river or lake, as it was assumed in (Doka 2003-IV). In 2014 the ecoinvent Association added a 10% water loss to air in all wastewater treatment datasets from that work, with only 90% of the water being returned to a river. This change was not officially documented by the ecoinvent Association. It was based on a range of 5% - 17% given by the company Veolia in France, depending on the climate and type of technologies (Levova 2014).

The water loss percentage in WWTPs is re-investigated for the present model. Two principal components of evaporation in WWTPs can be distinguished. On one hand, the open pools of the treatment plant allow passive evaporation. On the other hand, aeration pools allow for more intensive evaporation than passive evaporation. Water is also removed with the humidity in disposed sewage sludges, which is also investigated.

The passive evaporation depends chiefly on the water temperature, the wind speed, and the air's relative humidity. Also relevant to express a percentage loss are the hydraulic retention time, i.e. the time during which the wastewater resides in WWTP pools and the depth of pools.

In a generic WWTP the hydraulic retention time is around 17 hours. A medium sized WWTP processes on average around 80'000 m<sup>3</sup> wastewater per day. With a hydraulic reserve capacity of 20% and a generic depth of 3.5 m, assumed for all kinds of pools and stages, the required total surface of all pools *A* can be calculated to be around 20'000 m<sup>2</sup>.<sup>30</sup>

#### **Passive evaporation from pools**

McJannet et al. (2012) derived an approximation formula for the specific evaporation from reservoirs and pools, based on a literature survey. The following formalism was found for water evaporated per meter squared and per day.

Eq. 13.1 
$$m_p = (2.36 + 1.67 \cdot v) \cdot A^{-0.05} \cdot (1 - RH) \cdot p_{sat}$$

where

| where   |                                                                      |
|---------|----------------------------------------------------------------------|
| $m_n =$ | Specific mass of water passively evaporated in $kg/day.m^2 = mm/day$ |

- v = Wind speed 2 m above surface, m/s
- A = Area of the water pool surface, m<sup>2</sup>
- RH = Relative humidity of air, % of 100% saturation
- p<sub>sat</sub> saturated vapour pressure at the water surface temperature, kPa

Although this describes a specific rate loss per area, the pool area A appears in the formula: The term  $A^{-0.05}$  depicts a saturation effect over larger surfaces of water, where not every part of a water surface is equally good at evaporating water, because upwind pool areas have already begun to humidify the air with water vapour. Even for WWTP-sized pools, this effect alone reduces pool evaporation by about 40%.

The saturated vapour pressure  $p_{sat}$  depends on the temperature of the water. The Tetens approximation is used here to calculate  $p_{sat}$  from the water temperature (Monteith & Unsworth 2013:13):

Eq. 13.2 
$$p_{sat} = 0.61078 \cdot \exp\left(\frac{17.27 \cdot T_w}{T_w + 237.3}\right)$$

where

 $\begin{array}{ll} p_{sat} & Saturated \ vapour \ pressure \ at \ the \ water \ surface \ temperature, \ kPa \\ T_w = & Temperature \ of \ wastewater \ in \ pools, \ ^C \end{array}$ 

In the disposal model, the mean annual temperature of the site climate is available (MAT), but that is a parameter for the ambient air. It is assumed here that the wastewater temperature is affected by the environmental air temperature and following formalism is used to derive an estimate for the

<sup>&</sup>lt;sup>30</sup> 20'000 m<sup>2</sup> = 80'000 m<sup>3</sup>/day  $\cdot$  (1+20%) / 3.5 m / 24 h/day  $\cdot$  17 h

wastewater temperature  $T_w$  required above (original). This reflects that in climates with MAT  $\leq 20^{\circ}$ C, wastewater is thought to be warmer than the outside coming from buildings and that wastewater should remain above freezing temperatures.



The typical relative humidity of ambient air RH is coarsely estimated from available site data of mean annual precipitation MAP and actual evapotranspiration ETa.<sup>31</sup> Following formalism is employed (original):

Eq. 13.4 
$$RH = 0.4562 \cdot \left(\frac{ETa}{MAP}\right)^{-0.8267}$$
, corrected to  $\leq$  100% where  
RH = Relative humidity of air, % of 100% saturation  
ETa = Actual evapotranspiration of the site, mm/year  
MAP = Mean Annual Precipitation of the site, mm/year

This approximation for RH can fail, if humidity is influenced by sea air, but as we will see this is ultimately of little relevance.

For wind speed v a generic average value of 2 m/s is assumed. This is for 2 m above surface.

With the above, all parameters are available to calculate the passive evaporation in a WWTP. For a Swiss climate<sup>32</sup> the specific water mass evaporated according to Eq. 13.1 is  $1.06 \text{ kg/m}^2$ .day.<sup>33</sup> The assumed generic WWTP has pool areas A of around 20'000 m<sup>2</sup> and treats 80'000 m<sup>3</sup> wastewater per day. Thus the percentage of wastewater lost to passive evaporation is **0.026%** (=  $1.06 \cdot 20'000 / 1000 \text{ kg/m}^3 / 80'000$ ).

<sup>&</sup>lt;sup>31</sup> The actual evapotranspiration refers to evaporation from solid surfaces, not water areas, and is used in the landfill models to estimate leachate generation.

<sup>&</sup>lt;sup>32</sup> MAT 8°C, MAP 1000 mm/day, ETa 500 mm/day. Thus RH 80%.

<sup>&</sup>lt;sup>33</sup> This amounts to an evaporation rate of 390 mm/year. This is thus in the same order of magnitude as the evaporation from vegetated surfaces of 500 mm/year (=ETa).

Eq. 13.5 
$$r_p = \frac{\mathbf{m}_p \cdot \mathbf{A} \cdot 1000}{V_w}$$

where

r<sub>a</sub> = Percentage of passive evaporation loss per wastewater input, kg passive loss/kg wastewater

 $m_p = Specific$  mass of water passively evaporated in kg/day.m<sup>2</sup> = mm/day

A = Area of the water pool surface, m<sup>2</sup>

 $V_w = Volume of water treated daily, m^3/day$ 

Variations to this calculation yield different results. Most notably for instance in a dry and hot climate (RH=10%, MAT = 25°C) the percentage of passive evaporation can rise to 0.2%. Keeping a Swiss climate, but increasing the average annual wind speed to a breezy 8 m/s increases the loss percentage to 0.11%. Smaller WWTP can have higher loss rates which is chiefly an effect of less deep pools and consequently larger required pool areas per m<sup>3</sup> wastewater treated. Constructing an extreme case of a small WWTP in a arid, hot and windy climate, the loss percentage is 0.9%.<sup>34</sup>

So the passive evaporation in WWTP seems to be around two orders of magnitude below the 5-17% range previously applied by (Levova 2014). But passive evaporation is only one part of the evaporation losses. A second part is the evaporation in agitated aerated pools.

#### **Evaporation in aerated pools**

In the secondary, biological stage of WWTPs air is blown into the pool, usually from the bottom. It is reasonable to assume that this intense mixing facilitates evaporation. For the calculation here it is assumed that the air blown trough the aeration pools initially has the same relative humidity RH as the ambient air, but in the pool becomes *fully saturated* with water vapour (i.e. RH = 100%) and thus can carry water vapour from the pools. During aeration, a maximal amount of air used per m<sup>3</sup> wastewater treated is 10.8 kg air/m<sup>3</sup>.<sup>35</sup> It is assumed here that the air upon outgassing has achieved the same temperature as the wastewater T<sub>w</sub>. The saturation amount of water vapour in air depends on that temperature and is given by following approximation (original).

Eq. 13.6 
$$m_{sat} = 0.044 \cdot e^{(0.0591 \cdot T_w)}$$

where

 $m_{sat}$  = Specific amount of water per kg of completely saturated air, kg H<sub>2</sub>O/kg air Tw = Temperature of wastewater = temperature of aerated air, °C

The capacity of air to take up water vapour is limited by the original relative humidity RH of the entering air, i.e. if the air blown in is already very humid, the additional evaporation loss is diminished. Initial air RH is set equal to that of ambient air, which was already derived in Eq. 13.4.

The using the 10.8 kg maximal amount of air used per  $m^3$  wastewater treated derived above, the maximal percentage of aeration evaporation loss  $r_a$  is thus:

<sup>&</sup>lt;sup>34</sup> Risch et al. calculate the passive evaporation loss from WWTPs in a French climate (Toulouse) based on monthly measured data to be on average 2.56 mm/day (Risch et al. 2014: SI "Evaporation"). With the generic average WWTP dimensions used above (80'000 m<sup>3</sup> wastewater per day, pool areas 20'000 m<sup>2</sup>) this results in an percentage of passive evaporation loss of 0.064% (=  $2.56 \cdot 20'000 / 1000 \text{ kg/m}^3 / 80'000$ ). This matches well the results from the calculations used above when setting a French climate with 50% RH.

<sup>&</sup>lt;sup>35</sup> Based on a maximal aeration rate of 6000 m<sup>3</sup>/h in a WWTP with 16'000 m<sup>3</sup> treated per day (Schuhmacher 2012), and an air density of 1.2 kg/m<sup>3</sup>, thus 10.8 kg/m<sup>3</sup> = 6000 · 1.2 / (16'000/24).

Eq. 13.7  $r_a = (10.8/1000) \cdot m_{sat} \cdot (1 - RH)$ 

where

- $r_a = Maximal$  percentage of aeration evaporation loss per wastewater input, kg aeration loss/kg wastewater
- $m_{sat}$  = Specific amount of water per kg of air, kg H<sub>2</sub>O/kg air
- RH = Relative humidity of air, % of 100% saturation

In a Swiss climate<sup>36</sup> the maximal aeration loss percentage  $r_a$  is **0.002%**. This is around one order of magnitude lower than the passive loss percentage. Since  $r_a$  is a maximal percentage, the typical percentage will be even lower. For the wastewater inventory model it is assumed that the typical aeration rate is 80% of the maximal rate. The aeration loss percentage is less dependent on WWTP size, assuming biological stages have similar air requirements per m<sup>3</sup> wastewater treated.

#### Water loss via sewage sludge

After wastewater treated the remaining sludge is disposed. Three disposal types are considered in the inventory model.

| Sludge disposal | Assumed water content in disposed wet sludge |
|-----------------|----------------------------------------------|
| to agriculture  | 97%                                          |
| to landfill     | 75%                                          |
| to incineration | 70%                                          |
| to incineration | /0%                                          |

Sludges are assumed to be partly dried at the WWTP site and the abstracted water is recirculated into the WTWP. The sludges disposed in landfill and incineration are assumed to be dried to a larger degree in order to save disposal costs. In agriculture disposal a high water content facilitates spreading on the field.

If all wastewater is treated in a WWTP (i.e. %WWTP=100%), sludge dry matter in the range of 0.1-0.2 kg is produced per m<sup>3</sup> of average wastewater. Depending on the sludge mass disposal type, between 0.2 and 6 kg of water are removed. Thus the water removal by the sludge route is on average between 0.02% and 0.6%. In incineration this water will be transferred mostly to the air, but incinerated sludge carries little humidity away from the WWTP. In agricultural disposal, the water in sludge is returned to the soil and not lost.

In the inventory model, the sludge masses and disposal routes are calculated waste-specifically, and the sludge water fate is inventoried accordingly.

#### Water generation from mineralization of organic compounds

Some amounts water can be generated during decomposition of organic compounds in the WWTP. An aerobic decomposition during the secondary biological stage, can create water, as well as CO<sub>2</sub>.

Eq. 13.8 
$$C_x H_y O_z + n O_2 \rightarrow x CO_2 + y/2 H_2 O_3$$
, with n = (x + y/4 + z/2)

But is this generated water relevant? An average  $m^3$  of wastewater contains around 100 g of organic carbon with an approximate formula  $C_1H_{1.47}O_{0.48}$  (data from chapter 6 on page 25). Approximately 25% of TOC is converted to  $CO_2$  in the biological stage. Thus per 1000 kg of wastewater

<sup>&</sup>lt;sup>36</sup> MAT = 8°C,  $T_w = 14$ °C, RH = 81%.

approximately 0.219 kg of water will be generated.<sup>37</sup> So the water mass increases by 0.02%. This amount appears negligible, but it compensates partly the water lost by evaporation and sludge removal. In order to have an accurate water balance the waste-specific amount of generated water during the biological stage is included in the model, i.e. will increase the amount of water emitted to river after treatment.

#### **Conclusion water evaporation loss**

The above calculations demonstrate that the water evaporation loss in wastewater treatment plants is practically always well below 1 mass-% of the treated wastewater volume and 0.03% is a typical value for Swiss climate. The above calculations of passive and where appropriate aeration evaporation loss are included in the inventory model for the part of wastewater in WWTPs. The calculations are based on the site climate data provided by the user.

# 14 Process-specific burdens in treatment

Process-specific burdens are burdens in the treatment plant which are not assigned to one specific component of the wastewater but to the whole treated wastewater and are always constant for each m<sup>3</sup>.

## Grit waste

Grit is large pieces of solid waste that are removed from the wastewater at the very start. Grit consists of packaging, plant leafs and other coarse waste that is typically washed from road surfaces to the sewers. So grit mainly stems from vegetation, littering and road surfaces. It is a technical necessity to remove these waste materials before treatment, and for this reason their disposal is assigned to the treatment process, although the source of these materials is usually not the wastewater-producing process. Grit waste can be thought of as a result of the way sewers are constructed.

From a literature survey of Swiss treatment plants a mean value of 19.59 grams per  $m^3$  treated is found. Their disposal is inventoried as 50% biomass waste and 50% mixed plastic waste.

#### Sand waste

Sand waste is separated from an initial sedimentation. It can originate from natural sources from waterways or cracked sewer pipes, or from wastewater producers, when they illegally dump unsuitable waste like the contents of cat litter boxes into the toilet.

From a literature survey of Swiss treatment plants a mean value of 4.81 grams per m<sup>3</sup> treated is found. Its disposal is inventoried as inert material, since the pollutant content is probably low.

## Uncertainty

Based on the variability of the encountered literature data, for both specific waste flows a geometric standard deviation of 160% is assumed. This uncertainty will be combined with the uncertainty of wastewater mass arriving in treatment, see section on uncertainty of treatment rates on page 24.

 $<sup>^{37}</sup>$  0.219 kg = 100g / 12g/mol  $\cdot$  1.47mol/mol / 1.008g/mol  $\cdot$  (1.008  $\cdot$  2 + 16) g/mol / 1000g/kg.

# 15 WWTP infrastructure

# 15.1 Extrapolation of WWTP infrastructure with plant size

The infrastructure of WWTPs was already included in former wastewater treatment inventories (Zimmermann et al. 1996, Doka 2003-IV). There, a postulated linear extrapolation versus plant size, expressed in the nominal design PCE capacity, was used to derive infrastructure materials per plant. Linear extrapolations with plant size have also been used in other studies (e.g. Morera et al. 2020).

For the present work, the linear infrastructure extrapolation is abandoned and replaced with a scaling approach using a power law.<sup>38</sup> Also the former distinction of plants into 5 sizes is abandoned, and replaced with a more coarse classification for urban, rural, and national average sites. The reason for this simplification of size classes is that the availability of five size classes was not a much used feature of the former inventory tool and most datasets were simply created for a generic median plant size.

An examination of several papers devising WWTP infrastructure is presented in Appendix A on page 81. For the reappraisal of the infrastructure materials, a parameter for comparison is formed. This parameter is the Specific Concrete Mass SCM given in (kg concrete / wastewater treated annually). Here, "kilogram concrete" is the mass of concrete that is used for the construction of the whole plant, without reinforcement steel. This figure does not (yet) heed any material lifetimes of the plant, but is simply the total mass of concrete present in the plant, i.e. mass standing. "Wastewater treated annually" expresses the size of the WWTP. This is not a nominal design capacity, but the typical average of actual volume of wastewater treated annually, given in m<sup>3</sup>/yr. So the physical unit of the SCM parameter is (kg/(m<sup>3</sup>/yr)), or "mass per size". The SCM parameter allows a meaningful comparison of various plants, avoiding issues of different lifespans that different authors have applied.<sup>39</sup> Concrete is the largest part by mass of a WWTP.

Three different sources for WWTP concrete masses were compiled for WWTPs from France, Switzerland<sup>40</sup>, and the United States. See Appendix A for details.

|                                          | Wastewater<br>treated per year | Concrete mass per whole plant | Specific<br>concrete mass      | Source             |
|------------------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------|
|                                          | m <sup>3</sup> /yr             | kg                            | SCM<br>kg/(m <sup>3</sup> /yr) |                    |
| Olwisheim, France                        | 332'930                        | 9'393'100                     | 28.21                          | Risch et al. 2015  |
| Ergolz, Switzerland                      | 4'000'000                      | 56'582'240                    | 14.15                          | Fahner et al. 1995 |
| Mill Creek, Cinncinati,<br>United States | 157'618'869                    | 840'549'906                   | 5.33                           | Xue et al. 2019    |

 Tab. 15.1
 Data for three different WWT plants for wastewater treated per year, total concrete mass, and Specific Concrete Mass SCM.

<sup>&</sup>lt;sup>38</sup> A good introduction and application of scaling laws in LCA using power law functions can be found in (Caduff et al. 2012).

<sup>&</sup>lt;sup>39</sup> For instance (Xue et al. 2019) chose a 100 year lifespan for concrete parts, (Risch et al. 2015) and (Doka 2007-IV) used 30 years.

<sup>&</sup>lt;sup>40</sup> Fahner et al. (1995) is the same source that was already used in (Zimmermann et al. 1996) and (Doka 2003), but this study has been re-examined for the present work.

As can be seen the SCM decreases with increasing plant size. Plotting the SCM against plant size, reveals the characteristics of this trend, see Fig. 15.1. A power law fits well the observed data, see dashed regression line. The exponent of -0.2689 agrees well with Fermi-style, ad hoc estimates.<sup>41</sup>



Fig. 15.1 Plot of specific concrete mass SCM against the WWTP plant size with linear axes (left) and doublelogarithmic axes (right).

The extrapolation exponent of -0.2689 is applied to all expenditures, except the specific excavation work (m<sup>3</sup> excavation per (m<sup>3</sup>/yr) plant size), which is assumed to be constant, i.e. unaffected by plant size.

## 15.2 Infrastructure expenditures

The WWTP infrastructure expenditures are taken from (Fahner et al. 1995) which was reassessed and expanded for the present work. The data is for the Swiss plant Ergolz, which treats 4 Mio m<sup>3</sup> per year.

Tab. 15.2 shows the infrastructure expenditures used as the basis for extrapolation, reassessed from (Fahner et al. 1995). A land use area of  $17'500 \text{ m}^2$  for the whole plant was added. Disposal of materials is included, equal to the amounts inputted. Concrete density is  $2470 \text{ kg/m}^3$ . Column A in Tab. 15.2 shows the materials and expenditures of the plant standing, e.g.  $22'908 \text{ m}^3$  of concrete are 56'582'240 kg, which is the figure in Tab. 15.1. These figures do not yet heed any lifetimes, but are simply the present masses in the standing WWTP. In column B the values from column A are divided by plant size. The plant size is expressed in  $(\text{m}^3/\text{yr})$ , which is the volume of wastewater actually treated annually (not a nominal capacity), here 4 Mio  $\text{m}^3/\text{yr}$  (BL 2009). The figures in column B are then used to perform the extrapolations to other plant sizes as described in the previous chapter.

<sup>&</sup>lt;sup>41</sup> Assuming identical treatment times (hydraulic retention time HRT) and plant reserve capacities, the reservoir volumes of a plant will be proportionate to the treated wastewater Volume  $\propto V$ . Assuming similar pool geometries and wall thicknesses, the required concrete for those pools will be proportionate to the *surface* of the pool volumes, i.e.  $\propto V^{(2/3)}$ . The SCM expresses the mass of concrete per treated wastewater, which is  $\propto V^{(2/3)} / V = 1 / \sqrt[3]{V} = V^{-1/3}$ , i.e. an exponent of -0.333. Some concrete parts of the plant can be expected to be not or less dependent on plant size, so a larger exponent like the observed -0.2689 is sensible.

Tab. 15.2 WWTP infrastructure vector for Ergolz plant used for the extrapolation of WWTP infrastructure expenditures. A: masses and expenditures as of the standing plant (not heading lifetimes). B: specific amounts per plant size, which is expressed as m<sup>3</sup> treated/yr. B is used for extrapolation. C: infrastructure per m<sup>3</sup> wastewater treated, heeding material lifetimes.

|                                                |     | Α                       | В                                                |          | С                          |
|------------------------------------------------|-----|-------------------------|--------------------------------------------------|----------|----------------------------|
|                                                |     | per plant<br>(standing) | per actual m <sup>3</sup><br>treated<br>annually | lifetime | per m <sup>3</sup> treated |
|                                                |     |                         |                                                  | yr       |                            |
| excavation, hydraulic digger                   | m3  | 86'000                  | 0.0215                                           | 40       | 0.0005375                  |
| electricity, medium voltage                    | kWh | 935'000                 | 0.23375                                          | 40       | 0.00584375                 |
| concrete, exacting                             | m3  | 22'908                  | 0.005726946                                      | 40       | 0.000143174                |
| reinforcing steel                              | kg  | 1'957'200               | 0.4893                                           | 40       | 0.0122325                  |
| tap water                                      | kg  | 3'022'222               | 0.755555556                                      | 40       | 0.018888889                |
| aluminium, cast alloy                          | kg  | 15'750                  | 0.0039375                                        | 25       | 0.0001575                  |
| limestone, crushed, washed                     | kg  | 530'000                 | 0.1325                                           | 40       | 0.0033125                  |
| chromium steel 18/8                            | kg  | 128'250                 | 0.0320625                                        | 25       | 0.0012825                  |
| flat glass, uncoated                           | kg  | 48'400                  | 0.0121                                           | 40       | 0.0003025                  |
| copper                                         | kg  | 19'000                  | 0.00475                                          | 25       | 0.00019                    |
| synthetic rubber                               | kg  | 23'200                  | 0.0058                                           | 40       | 0.000145                   |
| rock wool mat, packed                          | kg  | 21'600                  | 0.0054                                           | 40       | 0.000135                   |
| chemicals organic                              | kg  | 130'800                 | 0.0327                                           | 40       | 0.0008175                  |
| bitumen                                        | kg  | 12'400                  | 0.0031                                           | 40       | 0.0000775                  |
| chemicals inorganic                            | kg  | 16'400                  | 0.0041                                           | 40       | 0.0001025                  |
| polyethylene, LDPE, granulate                  | kg  | 400                     | 0.0001                                           | 40       | 0.0000025                  |
| polyethylene, HDPE, granulate                  | kg  | 77'200                  | 0.0193                                           | 40       | 0.0004825                  |
| extrusion, plastic pipes                       | kg  | 77'600                  | 0.0194                                           | 40       | 0.000485                   |
| Transformation, from pasture and meadow        | m2  | 17'500                  | 0.004375                                         | 40       | 0.000109375                |
| Occupation, construction site                  | m2a | 35'000                  | 0.00875                                          | 40       | 0.00021875                 |
| Transformation, to industrial area, built up   | m2  | 10'500                  | 0.002625                                         | 40       | 0.000065625                |
| Transformation, to industrial area, vegetation | m2  | 7'000                   | 0.00175                                          | 40       | 0.00004375                 |
| Occupation, industrial area, built up          | m2a | 420'000                 | 0.105                                            | 40       | 0.002625                   |
| Occupation, industrial area, vegetation        | m2a | 280'000                 | 0.07                                             | 40       | 0.00175                    |

To arrive at the expenditures attributed to a single m<sup>3</sup> of treated wastewater for this plant, in column C the lifetime of materials is now heeded. I.e. column C is column B divided by the lifetime given. The lifetimes assumed in the original source (Fahner et al. 1995) are used here. Materials with long lifetimes will serve longer and therefore their burden will distributed over a larger mass of treated wastewater.

The data from the Ergolz plant are extrapolated to other WWT plant sizes, by heeding their size S and using the power law approach derived above.

$$SCM = SCM_0 \cdot \left(\frac{S}{S_0}\right)^{-0.269}$$

where

SCM = Specific Concrete Mass of target plant, kg/(m<sup>3</sup>/yr)

 $SCM_0$  = Specific Concrete Mass of Ergolz plant, =0.005726946 kg/(m<sup>3</sup>/yr)

S = Size of target plant, in (m<sup>3</sup>/yr)

 $S_0 =$  Size of Ergolz plant, in (m<sup>3</sup>/yr)

The specific amounts per plant size (column B in Tab. 15.2) can thus be converted into the infrastructure expenditures for a three-stage plant of an arbitrary size (with excavation being the exception).

## 15.3 Infrastructure of plant with different stages

The expenditures derived above are for a 3-stage WWTP. Depending on the technology mix of WWTPs used in a particular activity inventory, also 2-stage and 1-stage WWTPs can occur. For 2-stage plants the infrastructure is assumed to be roughly identical to a 3-stage WWTP. For a 1-stage WWTP the infrastructure demand is reduced overall by 65%.

Not all wastewater in an inventory will necessarily be treated in a WWTP, since some can be emitted untreated. WWTP infrastructure is only ascribed to that part of wastewater being treated, i.e. %WWTP. This factor is used to modify the infrastructure requirements of the wastewater disposal activity.

## **15.4** Application of extrapolation to three types of territory

The wastewater activities can not only be modelled for national average, but also a rural situation or an urban situation, and the required national wastewater fate data for this is derived in chapter 4.2.1 'National, urban and rural wastewater fate data' on page 14.

In rural situations, the WWTPs will tend to be smaller ones and in urban situations the WWTPs will tend to be larger ones, and this has consequences for required infrastructure demands for treated wastewater. The following sections describe how the WWTP size for the extrapolation is derived.

## **Rural situation WWTP size**

For inventories defined to occur in a rural territory, a WWTP with a size of 1.6 Mio  $m^3$  wastewater treated per year is assumed (SW<sub>r</sub>). This is based on a typical small-scale WWTP in Switzerland. In other countries different sizes might apply—and indeed even within any country—but due to lack of country-specific data on WWTP size distribution, this single size is used as a generic rural WWTP size here and used for the infrastructure extrapolation.

## Urban situation WWTP size

For inventories in an urban territory, a WWTP with a size of 120 Mio  $m^3$  wastewater treated per year is assumed (SW<sub>u</sub>). This is based on a large-scale WWTP. Also here this size is used as a generic urban WWTP size and used for the infrastructure extrapolation.

## National average WWTP size

For the national average, the typical mean plant size must be determined that represents the national average plant size wastewater is treated in. For this it is helpful to look at the structure of wastewater treatment in a country, with the help of the wastewater fate parameters derived in chapter 'Adopting JMP data for industrial wastewater fate' on page 12.



Fig. 15.2 Structure of a nation's wastewater fate (y-axis), differentiated into urban and rural territories (x-axis).

In Fig. 15.2 the structure of a country's wastewater fate is shown, differentiated into rural and urban territories.<sup>42</sup> The whole square area corresponds to the wastewater generated in a country per year. The green areas are the wastewater that is treated in WWTPs. The darker green areas are wastewater treated in urban areas, the light green areas wastewater treated in rural areas.<sup>43</sup> Treatment is usually more frequent in urban areas<sup>44</sup>, which means that the fraction of all treated wastewater that is treated in an *urban* WWTP (%Tu) surpasses the share of urban population (%popU).<sup>45</sup> The fraction %Tu can be calculated from the JMP data:

Eq. 15.2 
$$\%T_{u} = \frac{\%popU\cdot\%WWTP_{u}}{\%popU\cdot\%WWTP_{u} + (1 - \%popU)\cdot\%WWTP_{r}} = \frac{\%popU\cdot\%WWTP_{u}}{\%WWTP_{n}}$$

where

%Tu = Fraction of all treated wastewater that is treated in an urban WWTP

%popU = Share of urban population in that nation.

%WWTPu = Treatment rate of wastewater generated in urban territories only.

%WWTPr = Treatment rate of wastewater generated in <u>rural</u> territories only.

%WWTPn = National treatment rate of all national wastewater generated.

<sup>&</sup>lt;sup>42</sup> The example of JMP data for China is shown. China was chosen because its parameters are not concentrated at the 0% or 100% edge, but are midway and result in a clear chart.

<sup>&</sup>lt;sup>43</sup> The underlying simplification is made again here that wastewater volumes generated per capita are identical in rural and urban territories, cf. chapter 4.2 'Adopting JMP data for industrial wastewater fate' on page 10.

<sup>&</sup>lt;sup>44</sup> Indonesia is the only exception to this, where JMP data gives—surprisingly—slightly higher rates of sewer connections in rural areas (13.5%) compared to urban areas (9.5%), and this results also in higher treatment rates for rural territories (8.4%) than in urban territories (5.9%).

<sup>&</sup>lt;sup>45</sup> The fraction of treated wastewater in urban treatments %Tu must not be confused with the rate of wastewater treatment in urban areas (%WWTPu). For %Tu, the reference of 100% refers to <u>all wastewater treated</u> in a country, while for %WWTPu the reference of 100% refers to all <u>wastewater generated</u> in an urban territory.

In the example picture the urban population is 58% but the fraction of wastewater treated in urban WWTPs (%Tu) is 74%. The appropriate WWTP size for the national average infrastructure  $S_n$  can now be calculated using this latter fraction.

| Eq. 15.3 | $SW_n$                     | $= \mathscr{W}T_u \cdot SW_u + (1 - \mathscr{W}T_u) \cdot SW_r$                     |
|----------|----------------------------|-------------------------------------------------------------------------------------|
|          | where                      |                                                                                     |
|          | %Tu =                      | Fraction of all treated wastewater that is treated in an urban WWTP                 |
|          | $SW_n$                     | Size of the <u>national</u> average WWTP (in m <sup>3</sup> treated per year)       |
|          | $\mathrm{SW}_{\mathrm{u}}$ | Size of a generic <u>urban</u> WWTP (120 million m <sup>3</sup> treated per year)   |
|          | $\mathbf{SW}_{\mathrm{r}}$ | Size of the generic <u>rural</u> WWTP (1.6 million m <sup>3</sup> treated per year) |
|          |                            |                                                                                     |

In the example, the appropriate national average WWTP size  $S_n$  is 89 million m<sup>3</sup>/yr.

The so calculated national average WWTP size  $S_n$  is then used to derive the infrastructure needs for wastewater treatment using the extrapolations derived in chapters 15.1 and 15.2.

If the required data is not available for the calculation of %Tu, the generic global average of 68.08% is used.

# 16 Sewer Infrastructure

Detailed data on sewer infrastructure is available from (Labhardt 1996). This data encompasses the construction of a new sewer, which lasts 70 years and after that is renovated to last another 30 years. So in total the data covers more or less *two* constructions over 100 years. The data is given per m<sup>3</sup> sewered wastewater for five size class types of sewer networks. The data is nonlinear with size of the network, i.e. small capacity, rural networks tend to have higher material demands.<sup>46</sup> This is used below do derive extrapolations of sewer infrastructure with network size.

Labhardt (1996) was the basis of sewer infrastructure data used in (Doka 2003), where it was converted to five separate datasets per *kilometre of sewer length* (similar to pipeline transport infrastructure). For the present study, the concept of size classes is abandoned, and wastewater fate datasets can encompass a gradual, country-specific mixture of rural and urban sewer networks depending on the urban population share and wastewater fates, which affects the infrastructure demands in a nonlinear fashion. The separate sewer infrastructure datasets are therefore abandoned.

To check the validity of the data in (Labhardt 1996) it was compared to other literature sources. The entire Swiss sewer network was coarsely estimated in (BFS 2005) and for a total sewer network of 57'638 km a total mass of 74 Mio tonnes was estimated. This encompasses all kinds of sewer networks, urban and rural. The Specific Sewer Mass (SSM)—the total standing mass divided by the length—is 1280 kg/m. The source (BFS 2005) is likely to underestimate the total sewer mass as the mass was estimated by applied geometry from length, pipe cross-sections, and material densities, while additional materials like manholes, fittings, connectors etc. were neglected. The figure however includes pipe bedding materials.

<sup>&</sup>lt;sup>6</sup> The data also reflects the characteristic of rural sewer networks that due to the lower population density, the necessary length of piping per m<sup>3</sup> treated is larger than in more densely populated urban areas.

Another detailed sewer inventory is in (Risch et al. 2015)<sup>47</sup> where the sewer network of Grabels, near Montpellier, France, was inventoried based on detailed, modular construction data. For a sewer network of 46.3 km length a total mass of 86'635 tonnes is necessary (standing mass). The Specific Sewer Mass (SSM) is 1871 kg/m. Risch et al. include not only pipes, manholes, connectors, bedding materials, but also cleanfill/gravel to bury the sewers.

In the data of Labhardt (1996) the Specific Sewer Mass is between 1630 kg/m for rural networks and 1920 kg/m for urban networks. This concurs well with the literature values given above.

## 16.1 Sewer infrastructure extrapolations

The sewer data given in Labhardt per  $m^3$  wastewater treated shows some strong nonlinear dependencies, which are used here to derive extrapolations to sewer network of different sizes. The size of a network is characterised here by the amount of wastewater it transports annually, i.e.  $m^3/yr$ . For most materials and expenditures, the logarithm of sewer size and the material per  $m^3$  sewered result in an excellent fit. I.e. the extrapolation has following general form.

Eq. 16.1 
$$\left(\frac{expenditure_i}{m^3 \text{ wastewater sewered}}\right) = slope_i \cdot \ln\left(sewer \ size\left[\frac{m^3}{yr}\right]\right) + intercept_i$$
  
where  
 $\ln = natural \log arithm$ 

For different expenditures and materials different slope factors and intercepts are used.



Fig. 16.1 Plot of the concrete demand per m<sup>3</sup> wastewater sewered (from Labhardt 1996) versus to size of the sewer network in (m<sup>3</sup>/yr). The size of the five networks is 162'812, 1'074'842, 5'022'730, 14'368'866, 47'111'450 m<sup>3</sup>/yr.

The only exception to the single-logarithmic extrapolation is the excavation work. Excavation work is almost constant per m<sup>3</sup> sewered with slight trend to lower numbers for larger networks. Here a simple linear regression was used, which essentially omits the LN-function used in Eq. 16.1.

Tab. 16.1 shows the parameters used in the extrapolation to derive the sewer expenditures per  $m^3$  sewered for sewer networks of different sizes. For instance in a sewer network with a size of 100 Mio

<sup>&</sup>lt;sup>47</sup> In Supplemental Material No.3, sheet "LCI construction Sewer".

 $m^{3}/yr$ , the cement demand per  $m^{3}$  wastewater transported is 0.01394 kg/m<sup>3</sup> = -0.005656327·LN(100'000'000)+0.118141687.

| Expenditure                  | unit | Type of extrapolation | Slope        | Intercept   |
|------------------------------|------|-----------------------|--------------|-------------|
| Transport lorry <sup>1</sup> | tkm  | x-LN                  | -0.008647046 | 0.204376275 |
| Excavation                   | m³   | linear                | -2.6885E-12  | 0.00117     |
| Diesel in building machine   | MJ   | x-LN                  | -0.001192333 | 0.024796922 |
| Electricity                  | kWh  | x-LN                  | -0.000273705 | 0.007256364 |
| Concrete                     | kg   | x-LN                  | -0.035528546 | 0.75839406  |
| Cement                       | kg   | x-LN                  | -0.005656327 | 0.118141687 |
| Mortar                       | kg   | x-LN                  | -9.50608E-05 | 0.001932586 |
| Iron                         | kg   | x-LN                  | -0.002313145 | 0.047026254 |
| Steel                        | kg   | x-LN                  | -0.000802735 | 0.016319613 |
| Cast Iron                    | kg   | x-LN                  | -0.000390805 | 0.007945075 |
| PVC                          | kg   | x-LN                  | -5.33044E-05 | 0.001187738 |
| PE                           | kg   | x-LN                  | -0.000653887 | 0.017137028 |
| PP                           | kg   | x-LN                  | -5.6514E-05  | 0.001259854 |
| Rubber                       | kg   | x-LN                  | -2.11246E-05 | 0.000429464 |
| Sand                         | kg   | x-LN                  | -0.0162412   | 0.345728159 |
| Gravel                       | kg   | x-LN                  | -0.027869267 | 0.598476158 |
| Water                        | kg   | x-LN                  | -0.243788136 | 7.139705237 |

| Tab. 16.1 | Parameters for the extra | polation of sewer ex | penditures per m <sup>3</sup> | sewered depending | a on sewer size in ( | m <sup>3</sup> /yr) |
|-----------|--------------------------|----------------------|-------------------------------|-------------------|----------------------|---------------------|
|           |                          |                      |                               |                   |                      |                     |

## 16.2 Sewer sizes extrapolation in three types of territory

Sewer infrastructure is inventoried in the wastewater disposal inventories only for the part of wastewater that actually enters a sewer, which is described with the parameter %Sew (cf. Fig. 4.1 on page 13).

The sizes of the inventoried sewers determines the specific material demand per  $m^3$  sewered: in smaller networks the specific demand is higher than in larger networks as exemplified in Fig. 16.1 above. In rural territories the sewer networks tend to be smaller, as a re the treatment facilities, while in urban territories the sewer networks tend to be larger. The following sections describe how the sewer network sizes are derived for the three different territories.

## Rural situation sewer network size

The size of the treatment plant in a rural situation was previously set to a generic figure of 1.6 Mio  $m^3$  wastewater treated per year (see page 48). The sewer network for such a rural plant will match the size of that plant. So the sewer network size in a rural territory (SS<sub>r</sub>) is set to 1.6 Mio  $m^3$  wastewater sewered per year.

## Urban situation sewer network size

In an urban situation a generic treatment plant size of 120 Mio  $m^3$  wastewater treated per year was assumed (see page 48). Correspondingly the sewer network size in an urban territory (SS<sub>u</sub>) is set to 120 Mio  $m^3$  wastewater sewered per year.

## National average sewer network size

For the national average, the typical mean sewer size must be determined that represents the national average sewer size wastewater is sewered in. This is determined by establishing the share of sewered wastewater that is sewered in urban sewers %Su. This can be derived from the fate parameters derived

in chapter 'Adopting JMP data for industrial wastewater fate' on page 12. Similar to Eq. 15.2 the parameter %Su is determined by following equation.

| Eq. 16.2 | $\%S_u = -\frac{1}{2}$ | $\frac{\% popU \cdot \% Sew_{u}}{\% popU \cdot \% Sew_{u} + (1 - \% popU) \cdot \% Sew_{r}} =$ | $=\frac{\% popU \cdot \% Sew_u}{\% Sew_n}$ |
|----------|------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------|
|          | where                  |                                                                                                |                                            |
|          | %Su =                  | Fraction of all sewered wastewater that is sewered in an urb                                   | an sewer                                   |
|          | %popU =                | Share of urban population in that nation.                                                      |                                            |
|          | %Sewu =                | Sewering rate of wastewater generated in <u>urban</u> territories o                            | nly.                                       |
|          | %Sewr =                | Sewering rate of wastewater generated in rural territories on                                  | ly.                                        |
|          | %Sewn =                | National sewering rate of all <u>national</u> wastewater generated.                            |                                            |

If the required data is not available for the calculation of %Su, the generic global average of 72.17% is used.

If a nation's share of sewered wastewater sewered in an urban sewer is known, the appropriate size for the national average sewer SSn can be determined.

| Eq. 16.3 | $SS_n =$ | $= \mathscr{N}S_u \cdot SS_u + (1 - \mathscr{N}S_u) \cdot SS_r$                      |
|----------|----------|--------------------------------------------------------------------------------------|
|          | where    |                                                                                      |
|          | %Su =    | Fraction of all sewered wastewater that is sewered in an urban sewer                 |
|          | $SS_n$   | Size of the <u>national</u> average sewer (in m <sup>3</sup> sewered per year)       |
|          | $SS_u$   | Size of a generic <u>urban</u> sewer (120 million m <sup>3</sup> sewered per year)   |
|          | $SS_r$   | Size of the generic <u>rural</u> sewer (1.6 million m <sup>3</sup> sewered per year) |
|          |          |                                                                                      |

The so calculated national average sewer size  $S_n$  is then used to derive the infrastructure needs for sewer networks using the extrapolations derived in chapter 16.1.

## 16.3 Residential sewer

The sewer networks inventories above are the public sewers usually maintained by the municipality. Between the public sewer and a building a residential sewer is required, connecting a building's water outflow pipes and the public sewer. Depending on how infrastructure of a building is inventoried it can be important to include or exclude the residential sewer, to avoid data gaps or double counting. Inclusion or exclusion can be selected in the user's definition of the disposal site (see Calculation Manual document, chapter 4 'Creating a new disposal site entry', point 109).

The residential sewer infrastructure will be added to sewered share of wastewater. If for instance only 70% of wastewater is sewered (%Sew), the residential sewer pipe infrastructure will only be added to those 70%.

The material inventory of the residential sewer is taken from (Labhardt 1996). The inventory figures are already calculated per m<sup>3</sup> sewered heeding lifetimes.

| Expenditure                                                                | Unit | per m <sup>3</sup> sewered |
|----------------------------------------------------------------------------|------|----------------------------|
| excavation, hydraulic digger                                               | m3   | 0.001852148                |
| concrete, exacting                                                         | m3   | 6.93848E-05                |
| cement, unspecified                                                        | kg   | 0.007476563                |
| cast iron                                                                  | kg   | 0.001472656                |
| sand                                                                       | kg   | 0.057773438                |
| gravel, round                                                              | kg   | 0.091757813                |
| extrusion, plastic pipes                                                   | kg   | 0.007589844                |
| polyethylene, LDPE, granulate                                              | kg   | 0.005550781                |
| polyvinylchloride                                                          | kg   | 0.002039063                |
| tap water                                                                  | kg   | 0.90625                    |
| electricity, medium voltage                                                | kWh  | 0.001689779                |
| diesel, burned in building machine                                         | MJ   | 0.012121094                |
| disposal, building, reinforced concrete, to sorting plant                  | kg   | 0.166523438                |
| disposal, building, polyethylene/polypropylene products, to final disposal | kg   | 0.005550781                |
| disposal, building, mineral plaster, to sorting plant                      | kg   | 0.007476563                |
| disposal, polyvinylchloride, 0.2% water, to municipal incineration         | kg   | 0.002039063                |
| iron scrap, unsorted                                                       | kg   | 0.001472656                |

Tab. 16.2 Infrastructure for residential sewer inventoried per m<sup>3</sup> wastewater sewered, based on (Labhard 1996).

# 17 Sludge Disposal

The remaining sludge after wastewater treatment must be disposed. This can be raw sludge or digested sludge or a mixture (see Fig. 9.1). In the present model also this disposal is included in the inventory in a waste-specific manner.

Three sludge disposal fates are considered in the model:

- Spreading on agricultural fields
- Disposal in landfills
- Disposal in waste incineration

Other disposal routes are possible, like composting, but are disregarded for the moment.

## 17.1 Country-specific sludge disposal pathways

Depending on circumstances and legislations, different sludge disposal pathways can be employed in various countries. Spreading on agricultural fields is widespread, but prohibited in some countries. Incineration is only possible in countries with corresponding disposal infrastructure.

Data for European countries on sludge disposal could be compiled from the EEA Waterbase (EEA 2020). Rates can be quite variable over the years, which is why the weighted mean over three different years was calculated (2018, 2016, 2014).<sup>48,49,50</sup>

<sup>&</sup>lt;sup>48</sup> From the versions 8, 7, and 6 of the EEA Waterbase UWWTD released 2020, 2019, and 2017.

The available country rates are included in the model. The provided rates can be overridden by the user, if more pertinent data is available. No trends or extrapolations from the available countries could be derived for sludge disposal data. Disposal data for non-European countries must be provided by the user.

If no statistical data is available and no override data is provided by the user, an error value results. The given sludge disposal fates must add up to 100%. If the sludge fates contain an error or do to add up to 100%, the model will issue a warning before inventory export.

# 17.2 Treatment sludge to agriculture

Sludge from wastewater treatment can be used on agricultural fields. In the wastewater model the most elements in sludge diverted to agriculture can be inventoried directly as emissions on agricultural soil. In inventories of agricultural production of ecoinvent, inputs of fertilizer nitrogen and phosphorus are converted with local fate factors into emissions to air and water, while their majority is taken up as intended by the cultivated plants. For compatibility, these local fates are applied here, but in a simplified fashion. Nemecek & Schnetzer (2011) describe the employed methodologies to calculate emissions factors to arrive at emissions per *hectare and year* (ha.yr). For the present wastewater model not the *annual* emissions are of interest, nor the emissions in the first year after application, but the ultimate, *time-integrated* sum of emissions occurring from a particular deposition, i.e. transfer coefficients. These local transfer coefficients can be obtained by looking at the flows on an agricultural plot in a *dynamic equilibrium*, i.e. where per element the annual inputs are equal to the annual outputs.

The correspondence to agricultural production inventories is not absolute. In agricultural production inventories often only the *net* emission or uptake is inventoried, i.e. input to field minus plant uptake, for example for heavy metals.<sup>51</sup> For the wastewater model the *gross* input to agricultural fields is inventoried. Further fate of pollutants—into environmental media or into human food chains—is heeded in a generic fashion in the LCIA stage in methods with fate and exposure modelling.

## 17.2.1 Nitrogen species emissions from agricultural fields

The nitrogen flows on an agricultural field, as modelled in Nemecek & Schnetzer (2011), consists of nitrogen inputs from fertilizer, nitrogen uptake from the plant, emissions of nitrate ( $NO_3$ ) to water, of ammonia ( $NH_3$ ) to air, of nitrous oxide ( $N_2O$ ) to air, and of nitrogen oxides ( $NO_x$ ) to air. Based on this, the local fate factors are calculated here partly based on site-specific parameters and in an equilibrium flow situation (cf. chapter 'Equilibrium condition' on page 57 below).

## Nitrate loss

After plant uptake the nitrate loss represent the largest nitrogen loss. Nemecek & Schnetzer (2011) present a formula that depends on the precipitation rate. In the wastewater model the nitrogen fate calculation is attached to the precipitation rate provided for the disposal site (mean annual

<sup>&</sup>lt;sup>49</sup> Country-wide disposal of WWT sludges are listed in table "MSLevel". For the data compiled here, all data given as 'sludge reuse' other were added to agricultural spreading. 'Disposal other' and 'discharge into water' were added to disposal landfill.

<sup>&</sup>lt;sup>50</sup> Missing data for Germany were added from (Eurostat 2020).

<sup>&</sup>lt;sup>51</sup> For instance if fertilizer application adds 123 grams of cadmium to a field and the net plant uptake of cadmium is 50 grams, then only the net remainder of 73 grams will be inventoried in agricultural production inventories as emission to soil.

precipitation, MAP). This makes the calculation of the equilibrium flow situation site-specific. As agricultural production is not in the primary focus for the wastewater model, some required parameters for the nitrate loss are filled with generic values.

Eq. 17.1 
$$NO_3N = 21.37 + \frac{P}{c \cdot L} \cdot \left(0.0037 \cdot S + 0.0000601 \cdot N_{org} - 0.00362 \cdot U\right)$$

where

 $NO_3N = leached NO_3-N in kg N/(ha.yr)$ 

- P =precipitation and irrigation in mm/year
- c = clay content in kg/kg
- L =rooting depth in mm

S =Nitrogen supply through fertilizer in kg N/(ha.yr)

N<sub>org</sub> = Organic nitrogen in soil in kg N/ha

Nitrogen uptake by plant in kg N/(ha.yr) U =

The required precipitation rate is taken from the user-specified mean annual precipitation (MAP) for the site. Irrigation is neglected and set to zero. A generic clay content of 0.2 and a generic rooting depth of 1000 mm is assumed (based on Imbeault-Tétreault 2013). The nitrogen supply through fertilizer S is calculated recursively heeding all losses to obtain an equilibrium situation with stable input and output flows. For the organic nitrogen in soil Norg a generic value of 772.7 kg N/ha is used.<sup>52</sup> For the plant uptake U a generic value of 120.3 kg N/ha is assumed (based on Imbeault-Tétreault 2013).

This allows to calculate the nitrogen losses as nitrate, depending on the site's precipitation rate. Since the equilibrium depends on all losses and outputs, also the following emissions play a role in establishing the equilibrium fertilizer input S.

## Ammonia to air

The emissions of ammonia to air is calculated based on the fertilizer input and some modifying factors.

Eq. 17.2  $NH_3N = S \cdot AN \cdot (er + c_{app}) \cdot c_x$ 

| where               |                                                            |
|---------------------|------------------------------------------------------------|
| NH <sub>3</sub> N = | Ammonia-N emitted to air in kg N/(ha.yr)                   |
| S =                 | Nitrogen supply through fertilizers in kg N/(ha.yr)        |
| AN =                | Fraction of ammonia-N in total fertilizer N, kg/kg         |
| er =                | Ammonia emission fraction to air, kg/kg                    |
| $c_{app} =$         | correction factor that influences the emission rate, kg/kg |
| $c_x =$             | correction factor for the crop production system           |

The fraction of ammonia-N in fertilizer AN is set to 0.04839, based on Imbeault-Tétreault (2013). The ammonia emission fraction to air er is only available for animal manures in Nemecek & Schnetzer (2011). A generic value of 0.8 is used for er based on Imbeault-Tétreault (2013). The correction factor

<sup>52</sup> Based on a generic soil carbon mass of 10'000 kg C/ha (estimated from Lugato et al. 2014), a C/N ratio of 11 and a Norg fraction in N<sub>tot</sub> of 0.85 (both from Nemecek & Schnetzer 2011:15), thus 772.7 kg N/ha =  $10'000/11 \cdot 0.85$ .

 $c_{app}$  is set to zero, and the correction factor for the crop production system  $c_x$  is set to 0.8712, both based on Imbeault-Tétreault (2013).

#### Nitrous oxide N<sub>2</sub>O to air

The emissions of nitrous oxide are estimated based on three other flows: the fertilizer N input, the nitrate emissions, and the ammonia emissions. The calculation does not mean that nitrate is assumed to be converted to  $N_2O$ , i.e. transfer coefficients, but the magnitude of the other calculated emissions and flows are used to estimate the magnitude of the  $N_2O$  emissions.

Eq. 17.3  $N_2ON = 0.01 \cdot (S + cr) + 0.01 \cdot NH_3N + 0.0075 \cdot NO_3N$ where  $N_2ON =$  nitrous oxide-N emitted to air in kg N/(ha.yr) S = Nitrogen supply through fertilizers in kg N/(ha.yr) cr = Nitrogen in crop residues left on field in kg N/(ha.yr)  $NH_3N =$  Ammonia-N emitted to air in kg N/(ha.yr)  $NO_3N =$  leached NO<sub>3</sub>-N in kg N/(ha.yr)

The nitrogen in crop residues cr is assumed to be zero, all other parameters are determined in the recursive calculation of the equilibrium situation and will be determined from that.

#### Nitrogen oxides NOx to air

The magnitude of the emissions of nitrogen oxides are based on the magnitude of nitrous oxide emissions. Also here it is not implied that  $N_2O$  will subsequently be converted to  $NO_x$ —which would reduce the net  $N_2O$  emissions—but that nitrogen oxide emissions and  $N_2O$  emissions are in proportion to each other.

Eq. 17.4  $NO_x N = 0.21 \cdot N_2 ON$ where  $NO_x N = Nitrogen \text{ oxide-N}$  emitted to air in kg N/(ha.yr)  $N_2 ON =$  nitrous oxide-N emitted to air in kg N/(ha.yr)

#### **Equilibrium condition**

The equilibrium flow condition requires that all outputs equal all inputs. In equilibrium, the flows represent the time-integrated fates from which the sought transfer coefficients can be derived. The conditions for nitrogen is:

Eq. 17.5  $S = U + NO_3N + NH_3N + NO_rN + N_2ON$ 

I.e. the annual nitrogen input from fertilizer supply S must equal all nitrogen outputs, be it to plant (U) or any emissions. With this condition the equilibrium can be calculated recursively. Since all flows except U depend directly or indirectly on the precipitation rate, the equilibrium situation depends on the mean annual precipitation of the site.

For a precipitation of for instance 1000 mm/year the following nitrogen equilibrium flows and fates result:

|                    | Annual equilibrium<br>flow, kg/ha | Transfer coefficient |
|--------------------|-----------------------------------|----------------------|
| Fertilizer N input | 149.61                            |                      |
| <u>Outputs</u>     |                                   |                      |
| Plant uptake       | 120.3                             | 80.41%               |
| NO3-N loss         | 22.193                            | 14.83%               |
| NH3-N loss         | 5.0458                            | 3.373%               |
| N2O-N loss         | 1.713                             | 1.145%               |
| NOx-N loss         | 0.35973                           | 0.24%                |

The resulting site-dependent transfer coefficients are applied to the nitrogen mass in sludge transferred to agricultural fields for disposal, i.e.  $output = input \cdot transfer coefficient$ . Plant uptake is not recorded as an inventory exchange, but the emissions are included, heeding their molecular weights. These are then the waste- and site-specific nitrogen emissions from applying nitrogen in sewage sludge on agricultural fields.

## 17.2.2 Phosphorus emissions from agricultural fields

Also for phosphorus applied to an agricultural soil, the time-integrated fates of a phosphorus addition are of interest for the wastewater inventory. Nemecek & Schnetzer (2011) distinguish three different emissions of phosphorus from the agricultural field.

- 1. Leaching out to groundwater
- 2. Surface run-off to surface water
- 3. Water erosion of soil particles

The calculation is simplified here using generic values and results in fixed rates independent of climate. Assuming an equilibrium situation (cf. 'Equilibrium condition' on page 59), relating those loss rates to the input of phosphor results in the phosphorus transfer coefficients. The latter can then be used to calculate the emissions resulting from a sludge spreading containing phosphorus.

## Phosphorus leaching to groundwater

Nemecek & Schnetzer (2011) have a generic leaching rate  $P_{gw}$  of 0.07 kg P/(ha.yr) for arable land, which is used here. There is also a correction factor for increased losses for application by slurry, which however has hardly any influence using generic values.<sup>53</sup>

## Phosphorus emission to surface water

Nemecek & Schnetzer (2011) have a generic emission rate  $P_{ro}$  of 0.175 kg P/(ha.yr) for arable land, which is used here. Also here a correction factor for increased losses for application by slurry is applicable, but turns out to have practically no numerical influence.<sup>54</sup>

<sup>&</sup>lt;sup>53</sup> With an average P<sub>2</sub>O<sub>5</sub> content in sewage sludge of  $9.5 \cdot 10^{-6}$  kg per kg dry matter, an estimated sludge application rate of 3000 kg dry matter per ha, a correction factor of 1.00007089 results (=1+0.2/80  $\cdot$  9.5 $\cdot 10^{-6} \cdot$  3000), which would increase the emission by less than one tenth of a permille.

#### Phosphorus lost by soil erosion

Nemecek & Schnetzer (2011) present a formula for estimation of loss of phosphorus to surface water by soil erosion  $P_{er}$ . Only water erosion is meant here, not wind erosion. Soil erosion rates depend on a multitude of conditions such as type of crop, soil type, climate, land management practices etc. For the wastewater model, a generic annual soil erosion rate  $S_{er}$  of 3000 kg soil per ha is used, which is the average erosion rate of agricultural land in Europe (Eurostat 2020:Fig 2).

| Eq. 17.6 | $P_{er} =$  | $S_{er} \cdot P_{cs} \cdot F_r \cdot F_{erw}$      |
|----------|-------------|----------------------------------------------------|
|          | where       |                                                    |
|          | $P_{er} =$  | Phosphorus eroded to surface water in kg P/(ha.yr) |
|          | $S_{er} =$  | Soil erosion rate in kg dry matter/(ha.yr)         |
|          | $P_{cs} =$  | P concentration in soil in kg P /kg dry matter     |
|          | $F_r =$     | Enrichment factor for P, -                         |
|          | $F_{erw} =$ | Fraction of eroded soil reaching surface water, -  |

The enrichment factor  $F_r$  heeds the fact that eroded soil particles contain more phosphorus than the average soil matter. Nemecek & Schnetzer (2011) use following values for their calculations: Phosphorus concentration in soil  $P_{cs} = 0.00095$  kg P/kg soil; enrichment factor  $F_r = 1.86$ ; fraction reaching river  $F_{erw} = 0.2$ . Together with the generic soil erosion rate  $S_{er}$  of 3000 kg/(ha.yr) an erosion loss  $P_{er}$  of 1.06 kg P/(ha.yr) results.

#### **Equilibrium condition**

Nemecek & Schnetzer (2011) provide no data for plant uptake of phosphorus. For the wastewater inventory this is unimportant, since the emission losses of phosphorus are of interest here. The emissions must however be related to an input of phosphorus to obtain transfer coefficients. A generic input of phosphorus on agricultural land of 12 kg P/(ha.yr) is used here.<sup>55</sup> Assuming the emissions derived above and the input are in a steady state equilibrium—or reasonably close to it—the transfer coefficients can be derived.

| Tab. 17.1 | Generic annual flows | of phosphorus | on an agricultural f | field and derived | transfer coefficients |
|-----------|----------------------|---------------|----------------------|-------------------|-----------------------|
|-----------|----------------------|---------------|----------------------|-------------------|-----------------------|

| Phosphorus annual flows                            | kg P/(ha.yr) | Transfer coefficient for phosphorus |
|----------------------------------------------------|--------------|-------------------------------------|
| Phosphorus fertilizer input                        | 12           | 100%                                |
| Phosphorus leaching to groundwater P <sub>gw</sub> | 0.07         | 0.583%                              |
| Phosphorus emission to surface water Pro           | 0.175        | 1.458%                              |
| Phosphorus lost by soil erosion P <sub>er</sub>    | 1.06         | 8.835%                              |

<sup>55</sup> Taken from (Lu & Tian 2017:Fig 3) as 1.2 g P/(m<sup>2</sup>.yr) representing the world average phosphor input on cropland from fertilizer application in 2013.

<sup>&</sup>lt;sup>54</sup> The correction factor depends on the P<sub>2</sub>O<sub>5</sub> content in sludge and the applied sludge mass per ha. Using the same values as in footnote 53 above, a correction factor of 1.000248 results (=1+0.7/80  $\cdot$  9.5 $\cdot$ 10<sup>-6</sup>  $\cdot$  3000), which would increase the emission by less than one fourth of a permille.

For any phosphorus in sludge applied on agriculture the waste-specific emissions of phosphorus can be calculated. The last two emissions are combined into one emission to surface water. The not emitted amount (89.12%) can be assumed to be crop plant uptake.

## 17.2.3 Water balance

Sewage sludge to agricultural fields is assumed to be applied with a high water content of 97%. To close the water balance, the water contained in sludge is inventoried as water emissions. Based on the climate data given for the inventoried site, a share of evaporated water is calculated.<sup>56</sup> The evaporated water is inventoried as emission to low population air, while the remainder is inventoried as emission to groundwater.

## 17.2.4 Fertilizer function

Treatment sludge spreading provides nutrients to agricultural crops, which is a chief motivation for this type of disposal. So apart from detrimental emissions outlined above also a beneficial fertilizer function is provided, as well as a disposal service. The fertilizer can be seen as a by-product of the disposal on agricultural fields, similar to a net energy production in municipal incineration.

For allocation schemes where such by-products are relevant the provided fertilizer functions are inventoried. The amounts of nitrogen, phosphorus, and potassium are inventoried with the exchanges for organic fertiliser.<sup>57</sup>

Assuming an maximal case of 100% 3-stage WWTP treatment and 100% agricultural disposal of sludge, per cubic meters of average residential wastewater, 6.2 grams of N, 9.45 grams of  $P_2O_5$ , and 0.79 grams of  $K_2O$  of fertilizer is provided. This maximal case corresponds to a transfer from the original wastewater onto the agricultural field of 20% for nitrogen, of 92% for phosphorus, and 5% for potassium, reflecting the limited retention potential of wastewater treatment for the frequently soluble species of potassium and nitrogen.

## 17.2.5 Sludge spreading

A process for spreading liquid waste on agricultural field exists in ecoinvent "liquid manure spreading, by vacuum tanker". This includes the machine use for the spreading of  $1 \text{ m}^3$  of sludge or manure, but not the sludge emissions. The wet mass of the treatment sludge is converted to a m<sup>3</sup> figure by using an assumed density of 1030 kg/m<sup>3</sup>.

# 17.3 Sludge disposal in landfill

To include the emissions and expenditures for landfilling of sludge, the model for the sanitary landfill is employed here (Doka 2017). Also with this disposal, the inventory is calculated as waste-

<sup>&</sup>lt;sup>56</sup> From Actual Evapotranspiration (ETa) and Mean Annual Precipitation (MAP) the ratio ETA/MAP defines how much water will be evaporated into air. On arid and dry sites with reversed hydrology (ETA ≥ MAP) 100% evaporation is assumed.

<sup>&</sup>lt;sup>57</sup> Exchanges "organic nitrogen fertiliser, as N", "organic phosphorus fertiliser, as P2O5", and "organic potassium fertiliser, as K2O" each with the unit kg. "Organic" is used here as the antonym of "mineral" or "inorganic", not to denote a kind of agricultural practice.

specifically as possible, heeding the particular flows in sludge generated from the treatment of a particular wastewater, and not simply assuming average sludge.

The sludge disposal is dynamically integrated into the Excel calculation tools (so-called full integration). The results of landfilling of sludge are aggregated into the inventory of the wastewater disposal. With full integration the chosen technology parameters of a site or country for the landfill model are dynamically heeded (cf. Doka 2023-7:Fig 2.1).

## 17.3.1 Water balance

Sewage sludge to landfill is assumed to be disposed with a water content of 75%. To close the water balance, the water contained in sludge is inventoried as water emissions. The sludge is buried in the landfill and no evaporation to air is assumed. The water in sludge is assumed to be removed to landfill leachate and to surface water.

## 17.4 Sludge disposal in waste incineration

To include the emissions and expenditures for incineration of sludge, the model for municipal waste incineration is employed here (Doka 2015). Similar to the disposal in landfills above, the incineration is heeded as waste-specifically as possible, not simply assuming average sludge.

Also incineration is dynamically integrated into the Excel calculation tools (so-called full integration). The results of incineration of sludge are aggregated into the inventory of the wastewater disposal. With full integration the chosen technology parameters of a site or country for the incineration model are dynamically heeded.

## 17.4.1 Water balance

Sewage sludge to incineration is assumed to be disposed with a water content of 70%. To close the water balance, the water contained in sludge is inventoried as water emissions. From the water balance of the working point calculation of average sewage sludge incineration, a share of 92.7% of water is released to air, while 7.3% is emitted to the incinerators effluent and to surface water. This division is applied to all water in incinerated sludge.

# 18 Wastewater disposal dataset names

In the new wastewater disposal model, various dissimilar fates of wastewater can be contained in one single activity dataset, representing a mixture of disposal and treatment of that wastewater, for instance in a country average. This might encompass direct emission, sewering, minimal treatment, and/or elaborated treatment, as well as disposal of any generated sludge. Depending on the user choices, one single wastewater dataset can contain one or several different wastewater fates.

All waste disposal activities are being consistently called "treatment" in ecoinvent. This creates a potential for misunderstandings here, since in the activities modelled here not all wastewater is necessarily really *treated* in a wastewater treatment plant (WWTP), but direct emission with or without sewering of untreated wastewater can be included to a large degree. Nevertheless, the phrasing is maintained here, as it represents the way wastewaters are handled and disposed in the specified geography.

#### For Ecopsold2

To be as consistent as possible to previous activity datasets following general structure of wastewater treatment activities is introduced:

| Tab. 18.1 | Activity name structure | for ecoinvent v3.9+ | (EcoSpold2) |
|-----------|-------------------------|---------------------|-------------|
|-----------|-------------------------|---------------------|-------------|

| start         | wastewater name                         | comma,<br>disposal type * | comma , territory (optional) |
|---------------|-----------------------------------------|---------------------------|------------------------------|
| "treatment of | wastewater from maize starch production | , wastewater treatment    | , rural"                     |

\* regarding the added phrase ", wastewater treatment": in early 2022, the ecoinvent association decided to rename the wastewater disposal datasets to include the phrase ", wastewater treatment". In previous names this was not present, as it was largely a repetition of the start of the name "treatment of wastewater...". In previous names wastewater treatments were also qualified with an indication of the size class of the employed treatment plant, e.g. ", capacity 1.1E10l/year". Size classes are replaced by the coarser distinction into territories already introduced in the 2021 model (cf. chapter 4.2.1 'National, urban and rural wastewater fate data' on page 14).

The start phrase "treatment of..." denotes a waste disposal process as is customary in ecoinvent v3+. This is immediately followed by the waste name (no comma). The waste name is the specific wastewater exchange. The same words as for the actual exchange shall be use to minimise misunderstandings. Most wastewater exchanges start with the phrase "wastewater from..." followed by a descriptor of the originating process, e.g. "wastewater from maize starch production".<sup>58</sup>

The optional last part of the name describes the type of territory the activity occurs: rural, urban or national average. Since "national average" is the default territory for any econvent country-specific dataset, the suffix is omitted in this case.<sup>59</sup>

Depending on the chosen site, the name might also include a phrase ", from residence" if the sewer pipes from the building to the public sewer are included.

If from a certain process two or more different wastewaters originate and are to be inventoried separately, make sure the activity names and wastewater names are clear, unambiguous and understandable to practitioners not necessarily familiar or even interested with your specific wastewater-producing activity. Consider, that users of the database who might have to search through a large list of disposal activities to find an appropriate one are not necessarily interested in or knowledgable about your activity as a foreground. If two or more wastewaters originate from a process, it is also possible to define two or more waste materials as wastewaters and let an activity treatment a mixture of these, i.e. analogous to a complex solid waste.

In ecoinvent v3-3.7 (2011-2020) wastewater treatment datasets were representing exclusively treatment in a three-stage wastewater treatment plant, based on Swiss average performance.<sup>60</sup> The

Some historic exceptions to this exist ("treatment of wastewater, average...", "treatment of wastewater, from residence....", "treatment of wastewater, unpolluted...", "treatment of condensate from light oil boiler...", "treatment of heat carrier liquid, 40% C3H8O2...", "treatment of rainwater mineral oil storage..."). It is advised to start any novel wastewater exchange names with "wastewater from" (for EcoSpold2).

<sup>&</sup>lt;sup>59</sup> Also datasets can be created for global regions, like "Asia" or "Northern America" and there a suffix "national average" would be a misnomer.

activity name used to include a suffix, signifying the size of the treating plant, e.g. "capacity 1E9l/year". Five different size classes were distinguished like this. As in the new model not all wastewater is necessarily treated in a wastewater treatment plant of a certain capacity and mixtures of various treatment types may apply within the same dataset, the suffix "capacity ###l/year" is removed. Also the former ending phrase "to wastewater treatment" is discontinued, as not all wastewater is necessarily treated in these inventories.

## For Ecospold1

For inventories in the original Ecospold1 format (2003-2010), slightly different naming conventions apply than in EcoSpold2. The initial phrase is separated by a comma before the wastewater name. A similar structure is used for the local language German.

The optional suffix of the name may denote the territory (rural/urban). The national average is not denoted especially.

| Tab. 18.2 | Activity name structure for Ecospol | d1 for activities adhering to | o ecoinvent v1.0-2.2 (2003-2010) |
|-----------|-------------------------------------|-------------------------------|----------------------------------|
|-----------|-------------------------------------|-------------------------------|----------------------------------|

|    | start, comma | wastewater name                         | comma, territory<br>(optional) |
|----|--------------|-----------------------------------------|--------------------------------|
| EN | "treatment,  | wastewater from maize starch production | , rural"                       |
| DE | "Behandlung, | Abwasser Maisstärkeproduktion           | , ländlich"                    |

Depending on the chosen site, the name should also include a phrase ", from residence" if the sewer pipes from the building to the public sewer are included.

As explained in the previous chapter these inventories comprise several activities in one dataset and therefore the former ending phrase "to wastewater treatment" is discontinued, as is noting the size class ("Gr.Kl.") of the treating plant.

Different naming conventions are used in EcoSpold1 compared to EcoSpold2, e.g. *"treatment,..."* vs. *"treatment of..."*. This can help to discern different database sources.

It is advised though to *harmonise the names of the wastewater exchanges* themselves, to ease correspondence of datasets. For instance in ecoinvent v1.0-2.2 the wastewater from maize starch production was called "maize starch production effluent". It is advised to generally use the "wastewater from..." phrasing for any new wastewaters. A correspondence of the old legacy wastewater names and their new correspondences in ecoinvent v3.7.1 (2020) is shown in Tab. 18.3.

<sup>&</sup>lt;sup>60</sup> Which included some combined sewer overflow as direct emission of sewered, but untreated wastewater.

1

| Legacy wastewater names in ecoinvent v1.0-2.2                | Corresponding wastewater names in ecoinvent v3.7.1 (2020)       |
|--------------------------------------------------------------|-----------------------------------------------------------------|
| black chrome coating effluent                                | wastewater from black chrome coating                            |
| ceramic production effluent                                  | wastewater from ceramic production                              |
| concrete production effluent                                 | wastewater from concrete production                             |
| condensate from light oil boiler                             | condensate from light oil boiler                                |
| CRT tube production effluent                                 | wastewater from cathode ray tube production                     |
| glass production effluent                                    | wastewater from glass production                                |
| heat carrier liquid, 40% C3H8O2                              | heat carrier liquid, 40% C3H8O2                                 |
| LCD backlight production effluent                            | wastewater from liquid crystal display backlight production     |
| LCD module production effluent                               | wastewater from liquid crystal display production               |
| liquid crystal production effluent                           | wastewater from liquid crystal production                       |
| lorry production effluent                                    | wastewater from lorry production                                |
| maize starch production effluent                             | wastewater from maize starch production                         |
| pig iron production effluent                                 | wastewater from pig iron production                             |
| plywood production effluent                                  | wastewater from plywood production                              |
| potato starch production effluent                            | wastewater from potato starch production                        |
| PV cell production effluent                                  | wastewater from PV cell production                              |
| rainwater mineral oil storage                                | rainwater mineral oil storage                                   |
| sewage grass refinery                                        | wastewater from grass refinery                                  |
| sewage whey digestion                                        | wastewater from anaerobic digestion of whey                     |
| tube collector production effluent                           | wastewater from tube collector production                       |
| wafer fabrication effluent                                   | wastewater from wafer fabrication                               |
| soft fibreboard production effluent                          | wastewater from soft fibreboard production                      |
| fibre board production effluent                              | wastewater from hard fibreboard production                      |
| wastewater from medium density board production <sup>1</sup> | wastewater from medium density fibreboard production            |
| particle board production effluent                           | wastewater from particleboard production                        |
| wastewater from particle board production <sup>1</sup>       | wastewater from particleboard production                        |
| sewage                                                       | wastewater, average                                             |
| sewage, unpolluted                                           | wastewater, unpolluted                                          |
| sewage, from residence                                       | wastewater, from residence                                      |
| sewage, unpolluted, from residence                           | wastewater, unpolluted, from residence                          |
| n.a.                                                         | wastewater from ammonium paratungstate production               |
| n.a.                                                         | wastewater from ground granulated blast furnace slag production |
| n.a.                                                         | wastewater from vegetable oil refinery                          |
| wastewater from NF3 production                               | n.a.                                                            |

#### Tab. 18.3 Corresponding names of specific wastewaters in ecoinvent v1.0-2.2 (2003-2010) and ecoinvent v3.7.1 (2020)

The KBOB database contains some datasets whose names are styled according to the structure in EcoSpold2, but with slight variations,

i.e. "board" vs. "fibreboard" and "particle board" vs. "particleboard".

# 19 Wastewater composition definition

In past models of wastewater treatment a range of various parameters was used to characterise the input wastewater, like for instance "particulate phosphorus" or "soluble Kjeldahl nitrogen" (Doka 2003-IV). This allowed for a differentiated description of input wastewater. In actual practice this granularity was hardly ever useful, as the literature data providing data on produced wastewaters from activities almost never had those detailed parameters.

In the present model the definitions of wastewater is integrated in the framework of definition of *solid* waste, with its vector of chemical elements. So instead of characterising carbon with between one and four parameters like COD, BOD, DOC, TOC, simply the carbon content is used.

Solid wastes are characterised as a wet mass composition, i.e. kg element per kg wet mass. This is now also employed for the wastewater definition. For instance a concentration like 5 mg per litre will be entered as 0.000005 kg per kg wet mass. I.e. one litre of wastewater is assumed to be 1 kg of wet waste. Water content of wastewater will consequently be usually very large.

These decisions affect only the wastewater *definition*. The functional unit of a wastewater disposal activity will be based on 1 m<sup>3</sup> wastewater input (not one wet kilogram). Resulting output emissions in the calculated inventory will still be listed with the required granularity of the ecoinvent methodology (e.g. COD, BOD, DOC, TOC for carbon emissions to water).

## **19.1** Appropriate wastewater pollutant parameters

## 19.1.1 Nitrogen species

In the previous wastewater inventory model (Doka 2003-IV), the fate of nitrogen species like ammonia  $(NH_4^+)$ , nitrate  $(NO_3^-)$ , nitrite  $(NO_2^-)$  or organic-bound nitrogen though a treatment plant was modelled substance-specifically, and wastewater inputs could be specified with four different levels of detail.<sup>61</sup> The resulting water emissions were also inventoried in detail. For LCA results, the precise nitrogen species of a water emission is however not important, since all LCIA methods have characterisation factors which are *simply proportionate to the nitrogen content* of an emission.<sup>62</sup> Also in practice hardly ever more than one input parameter was available to specify production effluents (usually nitrate and/or ammonia). So the previous granularity for nitrogen species seems rather too large for LCA applications. For engineering questions and WWT plant operators the former granularity is of course often crucial and very relevant, but in the LCA world, modelling five different nitrogen species is rather excessive on the inventory side and currently entirely irrelevant on the impact assessment side. For this reason the present modelling considers simply total nitrogen as an input and does not discern different species. The treatment can lead to different outputs (to water, to air as  $N_2$  or  $N_2O$ , to sludge biomass) and these differences are of course heeded. This reduction in granularity reduces modelling complexities and which are instead enlarged to allow diverse international wastewater fates.63

To characterise the initial wastewater, the user shall as best as possible compile a value for total nitrogen. This is a sum of any organic or inorganic nitrogen (merely discounting any dissolved  $N_2$  gas). Wastewater parameters are usually given as nitrogen equivalents, e.g. "Nitrate as N". In case compound weights are given, they need to be converted into elemental weight. Which nitrogen species are likely to be included to cover the total nitrogen load, depends on the wastewater-producing activity. Some activities might produce for instance an ammonia-heavy wastewater with little nitrate nitrogen, and other process might produce a wastewater dominated by nitrate nitrogen.

## 19.1.2 Organic carbon

In previous models, four different parameters could be used to characterise the content of organic pollutants in the initial wastewater (Doka 2003-IV).

<sup>&</sup>lt;sup>61</sup> The four levels were A. (coarsest) total nitrogen, B. Total Kjeldahl Nitrogen, nitrate and nitrite, C. Soluble Kjeldahl Nitrogen, particulate nitrogen, nitrate and nitrite, D. ammonia, particulate nitrogen, nitrate, soluble organic-bound nitrogen.

<sup>&</sup>lt;sup>62</sup> They can be dissimilar for single emissions compartments, e.g. ocean water vs. fresh water, but within one emission compartment the characterisation factors are in proportion to the nitrogen content of the emitted molecule.

<sup>&</sup>lt;sup>63</sup> Also keeping the former granularity would also necessitate to create a *separate* location in the inventory calculation tools to define input wastes: one for solid wastes and one for the more granular wastewaters, with for instance five different types of nitrogen species. On a superficial level this would be trivial, but in order to fulfil the requirements of creating EcoSpold2 datasets—especially the need to keep new, uncanonised technosphere exchanges distinguishable from already existing exchanges—this would introduce several awkward parallelisms. Being able to input a wastewater composition at the same location as solid wastes is a clearly more efficient solution.

| Abbrev. |                          | Parameter remarks                                                                                                                          |
|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| тос     | Total organic carbon     | Carbon mass in organic compounds. This could be biogenic or fossil carbon, but not inorganic carbon like carbon in carbonates ( $CO_3$ -C) |
| DOC     | Dissolved organic carbon | The fraction of TOC that is dissolved in the liquid phase.<br>Consequently (TOC – DOC) is the carbon in solids of the wastewater           |
| BOD     | Biological oxygen demand | Mass of oxygen used up to degrade the more easily degradable part of organic carbon. Usually measured over 5 days (BOD <sub>5</sub> ).     |
| COD     | Chemical oxygen demand   | Mass of oxygen used up to degrade all of the organic carbon. Therefore COD $\ge$ BOD                                                       |

BOD and COD are important parameters for WWTP operators, since they represent the "work load" of a treatment plant and the reduction of either parameter is a good and a relatively easily measured indicator of the operational performance of the plant. However, for performing a mass balance of carbon through the WWTP both parameters are less useful.<sup>64</sup> The amount of TOC is the most relevant parameter here. In the following sections, prioritised suggestions are made on how to convert the various literature parameters for an input wastewater into a unique TOC figure.<sup>65</sup>

#### 1. Priority: TOC of wastewater is known

Use TOC parameter to define carbon in wastewater (kg C/kg WW). Make sure the TOC value from your source is for the *whole wastewater composition* and does not represent a part, e.g. other TOC besides specified components.

#### 2. Priority: DOC of wastewater is known

Depending on the wastewater source, you can assume TOC=DOC. If a wastewater also contains undissolved carbon, convert with a share of the dissolved fraction. In absence of data a generic value of 68% (Doka 2003-IV:14) for Swiss residential wastewaters can be used, i.e. TOC = DOC/0.68.

## 3. Priority: COD of wastewater is known

Convert COD with a generic TOC/COD ratio of 0.2565, i.e.  $TOC = COD \cdot 0.2565$ , based on a literature survey of inflows to current Swiss WWTPs.

## 4. Priority: BOD of wastewater is known

Convert BOD with generic TOC/BOD=0.53034, i.e. TOC = BOD  $\cdot 0.53034$ , based on a literature survey of inflows to current Swiss WWTPs.

If several of the parameters are available, use the highest priority. Try to find literature sources for the higher priority parameter. If more pertinent conversion factors than the generic Swiss factors given above can be found, they can be used. The goal should be to find a typical, representative value for TOC for the specific wastewater under investigation.

After this procedure, you should have a organic carbon concentration of the input wastewater with the unit kg C/kg wastewater.

<sup>&</sup>lt;sup>64</sup> Similar things can be said about other WWTP parameters like total suspended solids TSS, volatile suspended solids VSS, volatile fatty acids (VFA), or readily biodegradable COD (rbCOD) and similar summary parameters.

<sup>&</sup>lt;sup>65</sup> In the inventory model from (Doka 2003-IV) the parameters were converted in-model in parallel and the largest value resulting from those conversions was selected to represent the TOC value. This is replaced here by a staged selection sequence using priorities performed by the user (ex-model).

## 19.1.3 Phosphorus

In literature on wastewater pollutants, phosphorus is characterised as total phosphorus and/or as Phosphate-P ( $PO_4$ -P). For the present wastewater model the total phosphorus is required (inorganic and organic). Whether a value for phosphate-P reasonably covers total phosphorus depends on the wastewater-producing activity. The user must be diligent to cover the entirety of the pollutant load in the characterised wastewater.

## **19.2** Uncertainty of input composition

The uncertainty of the wastewater composition is calculated from composition data in a generic fashion. As with solid waste it is considered that major constituents by mass will likely have a smaller variability than small trace constituents. Following formalism is employed.

Eq. 19.1  $GSD = 1 + N \cdot \left[ \ln(c) \right]^{3}$ where c = Concentration of element in kg element per kg wastewater ln natural logarithm (base e) N = -0.000166667 = -1/6000Please note the exponent 3

The formalism is built on the basic uncertainties in the pedigree approach for water emissions from processes (DQG 2013, p.75).

## 19.3 Relevance of emissions of organic compounds

In the model presented here, organic compounds emitted in the wastewater effluent will simply be denoted with the sum parameter TOC (total organic carbon).<sup>66</sup> For wastewater plant operators this and similar sum parameters like COD, BOD, or DOC represent valuable information. In view of the goals of an LCA application however, a shortcoming arises that such sum parameters can comprise a very large range of very different compounds with very different ecotoxic or humanotoxic effects. Another practical problem of those parameters as an emission in LCA is that only very few LCIA methods actually have characterisation factors for TOC, COD, or BOD. The organic compounds emitted to water—either as direct untreated emission or after treatment—will therefore often not lead to any burden signal in LCIA, not even in a very generic or cursory way.

Single compound fates are not heeded in the model presented here, due to common lack of granular data availability in wastewater compositions for specific process wastewaters and also due to the resulting large model complexity requiring substance-specific behavioural parameters.

Nevertheless, it is valuable to investigate what a possible characterisation factor a TOC emission might have in LCIA, and what relevance that would have to the LCIA burdens currently described in the current wastewater model.

<sup>&</sup>lt;sup>66</sup> And also—as required by ecoinvent methodology—in parallel the sum parameters COD, BOD, and DOC will be inventoried, using generic ratios measured in wastewater effluents.

## 19.3.1 An estimated characterisation factor for TOC emissions

One way to home in on a possible characterisation factor for TOC emissions is to select some compounds that would conceivably occur in wastewater in considerable amounts. The assumption being that a characterisation factor for TOC will be chiefly be dependent on the compounds that are common by mass and not on the compounds that are scarce.

A selection of common single compounds that could occur as contributions to TOC or as degradation products of biomass is compiled here. This excludes man-made compounds designed for particular purposes, e.g. lubricants. Also only compounds with an available characterisation factor are selected. The characterisation factors of the ReCiPe'13 (HA) endpoint LCIA method is used, as being one with a very large range of over 2600 characterised organic compounds. For each compound the carbon content is derived from their molecular formula. Dividing the characterisation factor for the (whole) compound by the carbon content, results in a value for a characterisation factor per kg TOC *for this compound*.

| Compound                                              | Carbon content,    | ReCiPe characteri- | Ratio to |
|-------------------------------------------------------|--------------------|--------------------|----------|
| -                                                     | kg C / kg compound | sation per kg TOC  | median   |
|                                                       |                    |                    | value    |
| naphthalene                                           | 60%                | 0.111607744        | 167      |
| PAH, polycyclic aromatic hydrocarbons <sup>1</sup>    | 94%                | 0.083593748        | 125      |
| benzene                                               | 92%                | 0.026808597        | 40.1     |
| styrene                                               | 92%                | 0.020633725        | 30.8     |
| aldehydes, unspecified <sup>1</sup>                   | 75%                | 0.010881868        | 16.3     |
| acetaldehyde                                          | 54%                | 0.008610189        | 12.9     |
| ethylbenzene                                          | 90%                | 0.007899022        | 11.8     |
| n-hexane                                              | 84%                | 0.007067139        | 10.6     |
| ethylene glycol, monobutyl ether                      | 61%                | 0.006467394        | 9.66     |
| m-cresol                                              | 78%                | 0.005567683        | 8.32     |
| decanoic acid                                         | 70%                | 0.005031277        | 7.52     |
| hydrocarbons, aromatic <sup>1</sup>                   | 92%                | 0.004647671        | 6.94     |
| undecanoic acid                                       | 71%                | 0.003915237        | 5.85     |
| benzoic acid                                          | 69%                | 0.003328064        | 4.97     |
| phenol                                                | 77%                | 0.003325651        | 4.97     |
| dodecanoic acid                                       | 72%                | 0.002333678        | 3.49     |
| nonanoic acid                                         | 68%                | 0.001774352        | 2.65     |
| maleic acid                                           | 41%                | 0.001598578        | 2.39     |
| diethylene glycol                                     | 45%                | 0.001597297        | 2.39     |
| octanoic acid                                         | 67%                | 0.001187881        | 1.78     |
| salicylic acid                                        | 61%                | 0.001047544        | 1.57     |
| pentanoic acid                                        | 59%                | 0.00078945         | 1.18     |
| toluene                                               | 91%                | 0.000693521        | 1.04     |
| o-xylene                                              | 90%                | 0.000672201        | 1        |
| malonic acid                                          | 35%                | 0.00067218         | 1        |
| p-xylene                                              | 90%                | 0.000666255        | 0.996    |
| m-xylene                                              | 90%                | 0.000629113        | 0.94     |
| cyclododecane                                         | 86%                | 0.00058092         | 0.868    |
| heptanoic acid                                        | 65%                | 0.000574225        | 0.858    |
| hydrocarbons, aliphatic, alkanes, cyclic <sup>1</sup> | 86%                | 0.000554364        | 0.828    |
| fumaric acid                                          | 41%                | 0.000542228        | 0.81     |
| acetic acid                                           | 40%                | 0.000490728        | 0.733    |
| carboxylic acids, unspecified <sup>1</sup>            | 40%                | 0.00044609         | 0.667    |
| hexanoic acid                                         | 62%                | 0.000396852        | 0.593    |
| formic acid                                           | 26%                | 0.000377848        | 0.565    |
| propionic acid                                        | 49%                | 0.00037334         | 0.558    |
| oleic acid                                            | 76%                | 0.000324117        | 0.484    |
| butyric acid                                          | 54%                | 0.000305358        | 0.456    |
| cyclohexane                                           | 86%                | 0.000305064        | 0.456    |
| methanol                                              | 37%                | 0.000251273        | 0.375    |
| citric acid                                           | 37%                | 0.000242438        | 0.362    |
| L-lactic acid                                         | 40%                | 0.000235253        | 0.352    |
| oxalic acid                                           | 27%                | 0.000223698        | 0.334    |
| ethyl acetate                                         | 54%                | 0.000170967        | 0.255    |
| ethanol                                               | 52%                | 0.000166272        | 0.248    |
| methyl acetate                                        | 49%                | 0.000116111        | 0.174    |
| isobutyric acid                                       | 54%                | 9.25813E-05        | 0.138    |
| cvclooctane                                           | 86%                | 8.81981E-05        | 0.132    |
| cvcloheptane                                          | 86%                | 3.26376E-05        | 0.0488   |
| triethylene glycol                                    | 48%                | 3.20299F-06        | 0.00479  |
|                                                       | 1070               | 0.202002.00        | 0.00170  |

#### Tab. 19.1 TOC characterisation factors calculated for single compounds, in descending order

1 PAH considered as phenanthrene  $C_{14}H_{10}$ . Unspecified aldehydes as octyl aldehyde  $C_8H_{16}O$ . Aromatic hydrocarbons as benzene  $C_6H_6$ . Cyclic alkanes as  $C_{15}H_{30}$ . Carboxylic acids as acetic acid  $C_2H_4O_2$ . From the list of derived values a median of 0.0006692 points per kg TOC can be calculated. In absence of information on the concentration of compounds in a generic wastewater TOC emission, this value can serve as a preliminary estimate. As can be seen in the table for individual compounds the characterisation can deviate from this median, e.g. TOC from naphthalene is a factor 167 more damaging than the median value. But the goal here was to find a suitable first estimate for the characterisation of a plant's generic TOC emission as a whole, not for single compounds.

How would the inclusion of this estimated characterisation factor for TOC change the LCIA results of wastewater disposal? The ReCiPe score for the average national wastewater disposal in Switzerland is 0.0288 points per  $m^3$  wastewater input. The total TOC emissions to water are 8.27 grams per  $m^3$ . If the TOC emissions were considered with the characterisation factor derived above, the additional burden would be 0.00000554 points, or plus 0.01920% . So, from this first estimate the contribution from TOC emissions seems negligible.

But this estimate was based on the assumption of considering common hydrocarbon decay products as compounds to estimate a characterisation factor for TOC. What if we looked at individual and more industry-specific compounds?

## 19.3.2 Relevance of single organic compounds in wastewater

To exemplify the relevance of single organic compounds in wastewater, firstly concentrations in wastewater of those compounds needs to be known. Then those compounds require a characterisation factor to include their damaging effects into LCIA results. A measurement of various specific industrial chemicals in municipal wastewater was performed in (Abeggelen et al. 2009:Tab.14) during a 16-month campaign at the Swiss WWTP Regensdorf. A range of typically problematic 50 micro-pollutants and the dynamics of their elimination across the treatment plant was quantified. It is assumed in the exploration made here that those concentration values found in wastewater are also approximate for other locations.

Looking at substances, which could occur in industrial processes, initially pharmaceuticals and agrochemicals are excluded as being unlikely to be used in industrial processes. Compounds with large concentrations are benzotriazole and methyl-benzotriazole (both anti-corrosion agents) and bisphenol A. Of these compounds only bisphenol A has a characterisation factor in the ReCiPe'13 LCIA method (0.0646 points per kg). Abeggelen et al. (2009) recorded concentrations after the first mechanical stage, after the second biological stage, after ozonisation, and after a sand filter. Looking for an upper estimate and thus using the concentration after first-stage treatment only, a concentration of 4.5 micrograms bisphenol A per litre is found, leading to a burden of 0.294 *micro*points per m<sup>3</sup> wastewater. Average wastewater disposal in Switzerland creates a burden of 0.0288 points per m<sup>3</sup> wastewater. Thus the upper expected contribution of bisphenol A is only around a negligible 0.001%.

Opening up the scope and looking also at pharmaceuticals and agrochemicals paracetamol, diuron, carbendazim, and atrazin are selected here as examples. Paracetamol, a popular analgesic, is the pharmaceutical with the largest concentration of all substances in Abeggelen et al. (2009), 38 microgram per liter after first-stage treatment. With a low characterisation factor of 0.003 points per kg, an upper estimate burden of 0.12 micropoints per m<sup>3</sup> wastewater results, which would increase the burden in average Swiss wastewater disposal by 0.0004%.

The three agrochemicals have in part higher characterisation factors than the other substances.<sup>67</sup> Their concentrations are however low, below 0.2 micrograms per litre. Also here, these substances would increase the burden in average Swiss wastewater disposal only in negligible amounts < 0.0002%, even smaller than of the substances calculated before.

#### Conclusion

These explorations are obviously not comprehensive. But while it was aimed to maximise the burdens from single substances (by selecting substances of concern with high average concentrations and using concentrations after only mechanical treatment with little elimination), none of the investigated substances could really be called a relevant contribution.

But this exploration only looked at the approximate relevance for *average* wastewater. For a particular industrial activity it is possible that concentrations are different by orders of magnitude and individual organic compounds could play a relevant role in the LCIA of wastewater disposal. This is likely to happen, if the concentrations in wastewater are high, elimination in treatment is low (or there is little treatment), or characterisation factors are high.

Also the list of compounds in Abeggelen et al. (2009) is not comprehensive, although they focused on substances of concern. The inventories created with the Excel tools implementing the model presented here can be augmented, if a particular process is known to produce particular wastewater pollutants. This can become relevant, especially if the elimination is low and the toxicity is high. An effect on the LCIA result will however only be observable, if the compounds possesses available characterisation factors. To include these emissions, the concentration in wastewater must be researched, as well as the compound's elimination in the wastewater treatment. The latter must be applied in accordance with the share and level of wastewater treated (and the treatment levels (%WWTP, %1ST, %2ST, see chapter 4.2 'Adopting JMP data for industrial wastewater fate' on page 12).

## 19.4 Wastewater degradability

Wastewater comprises a vast conglomerate of different compounds with differing biodegradability. The BOD parameter symbolizes the sum of organic compounds that are relatively easy to biodegrade – usually measured as oxygen uptake within a time frame of 5 days. The ratio of BOD/COD of a wastewater roughly characterises the share of easily biodegradable organic compounds compared to their total amount. A wastewater with large BOD/COD ratio can be considered better biodegradable than a wastewater with small BOD/COD ratio.

It might be tempting to incorporate this degradability characterisation into the WWT model. Intuitively, larger elimination would be expected from wastewaters with large (BOD/COD) through better mineralization, especially in the biological stage. BOD will also be eliminated through sludge, but more easily degradable compounds should lead to faster and better mineralization and subsequently air emissions as CO<sub>2</sub>.

This assumption can be tested. A larger total BOD elimination would be expected in plants treating wastewater with a high BOD/COD ratio. So in a plot of BOD elimination against BOD/COD ratio, a larger elimination would be expected at the high end of BOD/COD. This plot was created from available data of actual loads and eliminations from over 5700 individual European WWT plants for the year 2018 (EEA 2020) and is shown in Fig. 19.1. No pronounced trend can be observed. The BOD

<sup>&</sup>lt;sup>67</sup> For diuron, a herbicide, 0.314 points per kg; for carbendazim, a fungicide, 0.0617 points per kg; for atrazin, a herbicide, 0.3387 points per kg.

elimination is typically high across the whole observed range of BOD/COD ratios – with a median value between 95 and 98% (red line). At relatively high BOD/COD ratios > 0.7 rather *lower* BOD eliminations are observed than in the more frequent BOD/COD range of 0.4–0.6. In a similar plot for COD elimination (not shown) the effect, if any, is also merely slight and even the opposite of the expected: a slight tendency for lower COD eliminations are found at the high end of BOD/COD rather than at the low end.

Therefore the BOD/COD ratios seem to influence the *actually observed* WWT elimination performance only to a very limited degree, if at all. Other circumstances have more relevant influence on elimination than the relative biodegradability expressed in BOD/COD. On average, plants seem to be able to eliminate the carbon mass in wastewater roughly equally well, regardless of its overall biodegradability.<sup>68</sup>



Fig. 19.1 Measured BOD elimination against the BOD/COD ratio of incoming wastewater in 5700 European WWT plants for 2018. The red line is the central tendency given as median per consecutive segment.

For this reason, no degradability parameter for wastewater is introduced in the present model. Eliminations are derived as technological characteristics of treatment plants and not modified based on the degradability of any specific wastewater.

# 20 Corrections in wastewater composition

## 20.1 Wastewater from particle board production (2014)

Instead of pollutants per m<sup>3</sup> wastewater, the pollutants *per m<sup>3</sup> of produced particle board* were falsely entered in 2014 (Werner 2014-a). Old wrong figures were 0.00044 kg COD /m<sup>3</sup> and 0.0000616 kg BOD /m<sup>3</sup>. Heeding the 0.0711 m<sup>3</sup> of wastewater produced per m<sup>3</sup> particle board, the concentrations

<sup>&</sup>lt;sup>68</sup> This statement refers to the *bulk sum of organic compounds* processed in a WWTP as measured here. For *individual* compounds, e.g. hexane or ethylene glycol, it is reasonable to maintain that clear differences in degradability exist and such differences can also measured, see for instance (Fahlenkamp et al. 2008:Tab 2.2).
would be a factor 14 higher (Werner 2020). But even those figures are very minute and represent practically unpolluted water.<sup>69</sup>

The intended wastewater concentrations are then 0.00619 kg COD/m<sup>3</sup> and 0.000866 kg BOD/m<sup>3</sup>. TOC content was then derived from COD. These new, corrected figures are however also four orders of magnitude lower than the legacy values from ecoinvent 2000, which seems odd. But it's possible that advancements in in-house wastewater treatment lead to such changes in production effluents.

# 20.2 Wastewater from medium density fibreboard production (2014)

Instead of pollutants per m<sup>3</sup> wastewater, the pollutants *per m<sup>3</sup> of MDF board* were falsely entered in 2014 (Werner 2014-b). Heeding the 0.407 m<sup>3</sup> of wastewater produced per m<sup>3</sup> MDF board, the concentrations are a factor 2.457 higher (Werner 2020). The corrected figures are thus (all in kg/m<sup>3</sup>) 0.015995 BOD, 0.149386 DOC, 0.01671 N<sub>tot</sub>, 2.56511E-05 PO<sub>4</sub> as P, 0.000164373 Cr, 8.20639E-05 Cu, 0.000117936 Zn. TOC content was then derived from DOC.

### 20.3 Wastewater from hard fibreboard production (2014)

Instead of pollutants per m<sup>3</sup> wastewater, the pollutants *per m<sup>3</sup> of fibreboard* were falsely entered in 2014 (Werner 2014-c). Heeding the 2.23 m<sup>3</sup> of wastewater produced per m<sup>3</sup> hard fibreboard, the concentrations are a factor 2.23 *lower* (Werner 2020). The corrected figures are thus 0.560538 kg COD/m<sup>3</sup>, 0.0028296 kg N<sub>tot</sub>/m<sup>3</sup>, and 0.000713 kg P<sub>tot</sub>/m<sup>3</sup>. TOC content was then derived from COD.

### 20.4 Plywood production effluent (2003)

The original COD value was 0.7 kg/m3 and the BOD is 4.23 kg/m3, i.e. COD < BOD, which should not occur. This data is from the source (Werner et al. 2003). Another source suggests the ratio for BOD/COD in plywood effluent is 0.65, with 4.1317 kg COD per m<sup>3</sup> and 2.684 kg BOD per m<sup>3</sup> (Sunny et al. 2017). The used COD value was therefore augmented to 6.508 kg/m<sup>3</sup> (=4.23 / 0.65), while the original BOD value of 4.23 kg/m<sup>3</sup> was retained. TOC content was then derived from COD.

### 20.5 LCD module production effluent

In the datasets by (Hischier et al. 2007:93), the BOD value  $(3.37 \text{ kg/m}^3)$  is larger than the COD value  $(2.6 \text{ kg/m}^3)$ , which should not happen, as COD is the more complete oxidation than BOD. BOD and COD values were originally adopted from Socolof et al. (2001). And already in Socolof et al. (2001) BOD is larger than COD. To remedy this, it was assumed that the COD value is meant to represent an *additional* oxygen demand beyond BOD. TOC content was then derived from COD.

<sup>&</sup>lt;sup>69</sup> For comparison, the total organic carbon in precipitation is in the range 300–1900 μg C/L (from five European background sites in Cerqueira et al. 2010). Using a TOC/COD ratio of 0.27, the COD concentration given in (Werner 2014) world equate to 1663 μg C/L, i.e. similar to unpolluted rainwater.

### 20.6 Heat carrier liquid, 40% propylene glycol (C<sub>3</sub>H<sub>8</sub>O<sub>2</sub>)

This wastewater is for a 40% propylene glycol solution which acts as heat carrier liquid in solar collector plants. For small amounts from domestic plants, disposal via sewer is tolerated in Switzerland.

For the inventories by (Jungbluth 2003) an unsourced composition of 650 kg COD per  $m^3$  wastewater was assumed. Since the formula of propylene glycol is known and C, H, O can now explicitly be entered as composition, the former COD value was now replaced with 0.20834 kg C, 0.185 kg O, 0.04663 kg H per litre of wastewater.<sup>70</sup>

#### 20.7 Wastewater from NF<sub>3</sub> production

This is a wastewater composition created by Rolf Frischknecht and Sybille Büsser, for the KBOB 2021 database, created on 29th Jan 2010 (Jungbluth et al. 2012). It is a merely theoretical wastewater composition based on reaction stoichiometry, not actual measurements. It was assumed by the authors that  $NF_3$  is produced from the reaction

$$NH_3 + 3 \cdot F_2 \implies NF_3 + 3 \cdot HF$$

with a yield of 95%. The resultant hydrofluoric acid (HF) is then neutralised with added Ca(OH)<sub>2</sub>.

$$2 \cdot \text{HF} + \text{Ca(OH)}_2 \Rightarrow \text{CaF}_2 + 2 \cdot \text{H}_2\text{O}$$

In this calculation the authors falsely assumed that only 4.8% of the HF generated goes into wastewater, when its 99.8% (0.2% go into flue gas/air). Corrected for 99.8% HF into wastewater and neutralised with Ca(OH)<sub>2</sub> results in 70.4 kg F/m<sup>3</sup> and 74.2567 kg Ca/m<sup>3</sup>. A rate of 0.2% of the input NH<sub>3</sub> is emitted to air while 4.8% is contained in the wastewater and adds 0.83 kg N/m<sup>3</sup>.

The original erroneous wastewater contained (in kg/m<sup>3</sup>) 6.76 F; 13.55 Ca; and 0.8302 NH<sub>4</sub>-N;.

### 21 New exchanges for environmental scarcity LCIA

The method of ecological scarcity (a.k.a. eco-scarcity, or MOeK, or UBP) is a Swiss LCIA method (ÖBU 2013). This method has some special characterisation factors for certain exchanges that occur within the technosphere (apart from the more traditional factors for biosphere exchanges). Relevant for disposal processes are the characterisation factor for organic carbon placed in landfill and total waste mass placed in landfill. These flows relate to mass *going into* a landfill, not its emissions coming out of the landfill, and are therefore not covered by the usual biosphere exchanges of conventional inventory work.

In order to asses these two material flows for ecoscarcity accurately, new exchanges were introduced in 2020, which accurately represent the targeted mass flows (Doka 2020-M). These exchanges were discussed and defined with the ecoscarcity authors (Fredy Dinkel, Thomas Kägi, Rolf Frischknecht) prior to their introduction in the suite of Excel disposal tools.

<sup>&</sup>lt;sup>70</sup> Based on a 40 V-% solution, density of propylene glycol of 1100 kg/m<sup>3</sup>, sum formula of C<sub>3</sub>H<sub>8</sub>O<sub>2</sub> with a molecular weight of 76.1 g/mol.

With regard to wastewater treatment, flows into landfills occur only downstream after processing of wastewater and generation of sewage sludge as a secondary waste. Sewage sludge might be landfilled or incinerated. After incineration, solid residues as tertiary waste can be landfilled. The wastewater treatment inventory model includes all these higher order disposal processes in a wastewater-specific manner and are therefore also able to detail the required technosphere flows into landfill.<sup>71</sup>

### 22 Calculation Manual

The wastewater disposal model is implemented into an Excel calculation workbook and integrated into the suite of disposal Excel workbooks, which can export EcoSpold1 and EcoSpold2 process inventory files. The tools include a centralised repository for waste composition definitions, site parameters like climate, EcoSpold2 Master Data etc. The usage of the tools is described in updated report (Doka 2021).

### 23 Results

#### 23.1 An example for two countries

With the model and calculation tools elaborated here a large range of different inventories of wastewater disposal of specific wastewaters can be created. A complete result presentation is therefore not possible. As an exemplary examination the results for average wastewater disposal in Switzerland and Zambia is presented here. Zambia is chosen for being a country with exceptionally high share of untreated wastewater: 97%, based on JMP data, therefore representing a country with a poor national average wastewater sanitation. Only an estimated 2.86% of wastewater in Zambia is treated and for subsequent sludge disposal 100% agricultural spreading is assumed. The average wastewater derived in chapter 6 is used as input for both countries. So the difference in results reflects the difference in wastewater disposal and technologies, not differences in input.

<sup>&</sup>lt;sup>71</sup> One of the motivations of the "landfill ecofactors" is to penalise not recycled material; another is to penalise the risk of undesired landfill reactions by introducing organic carbon into landfills and possible other motivations. It could be argued that wastewater emitted directly into water represents also unrecycled matter and could be included. On critical examination, it is obvious that the same argument would also hold for water emissions *after* wastewater treatment and in fact for any kind of emission into any environmental media. The over-generalisation from flows into landfill to emissions in general is therefore not carried out here.



Fig. 23.1 LCIA results for wastewater disposal in Switzerland and Zambia with ReCiPe'13 (HA) endpoint method.

Fig. 23.1 shows the LCIA results of average wastewater disposal in Switzerland and Zambia per m<sup>3</sup> wastewater. In Switzerland rates of sewering and treatment are high leading to large burden contributions for infrastructure as well as WWT energy and auxiliaries inputs. The emissions to river water are low. They are comprised of emissions of untreated wastewater, emissions after treatment, and effluents of the waste incinerator disposing of sewage sludge. The emissions to groundwater are larger than river water, which reflects the fact that many pollutants removed from wastewater end up in incineration residues, which subsequently partially leach to groundwater in landfills. Two thirds of the groundwater burden are caused by the heavy metal zinc. Air emissions come from direct emissions of the treatment plant and from sludge incineration. The largest contributions here are emissions of NO<sub>x</sub> and N<sub>2</sub>O from sludge incineration.

By comparison the burden in Zambia appear overall smaller. With low sewering and treatment rates, infrastructure burdens are minute. Emissions to river water are large and reflect the low treatment rates and direct emissions from untreated wastewater. Some small emissions to groundwater and air also occur, here mainly from agricultural sludge spreading.

#### 23.2 The unheeded utility of wastewater treatment

The conventional total LCIA burden of wastewater disposal in Zambia in Fig. 23.1 is about half as large as in Switzerland. This might seem surprising, as treatment rates in Switzerland are much higher. Is wastewater treatment actually detrimental for the environment? Is the significant expenditure for infrastructure not over-compensated by beneficial effect from reduced emissions? As explained in chapter 3 'Relevance of unsanitary conditions' on page 10, the burden on human health due to unsanitary conditions from untreated or insufficiently treated wastewater is not contained in these results. Inclusion of these effects would increase the burden of wastewater disposal causing unsanitary conditions, due to the safeguard subject "Human Health" in LCIA methods. But with conventional LCIA methods one of the chief reasons to perform wastewater treatment—better sanitation to prevent diseases—is not reflected in their human health effects.

How large are those burdens from unsanitary conditions and, if included, are they large enough to change to relative outcome in this example? The reasons to not (yet) include burdens from unsanitary conditions in these inventories were given in chapter 3. Here a generic first estimate of those burdens is attempted.

In chapter 3 a worldwide average damage for people exposed to unsafe sanitation of 0.026 DALY/cap.year was calculated. A simplifying assumption is made here now that unsanitary

conditions are very local, i.e. people *suffering* from unsanitary conditions are the same people *causing* unsanitary conditions.<sup>72</sup> To connect the damage from unsafe sanitation to the LCIA results per m<sup>3</sup> wastewater, the annual rate of wastewater generation per person needs to be calculated. The wastewater input in Fig. 23.1 contains 124 mg TOC/l and 399.7 mg COD/l. The generic output of COD per person is 120 grams daily. Thus, the one cubic metre wastewater f.u. corresponds to the pollutant load one person produces during 3.3 days.<sup>73</sup>

If *all* the wastewater would lead to unsanitary conditions, this would result in a damage of 0.000237 DALYs per m<sup>3</sup> wastewater.<sup>74</sup> Converted into ReCiPe points, this is 4.695 points per m<sup>3</sup>.<sup>75</sup> While a lot of wastewater in Zambia is not treated, not all of that untreated water necessarily leads to unsanitary conditions.<sup>76</sup> The statistics from JMP detail the kinds of toilets used, which play an important role in the sanitary situation (WHO/UNICEF JMP 2019). In Zambia the average national rate of open defecation (no toilet facilities used at all) is 19.3%, and 36.6% of the inhabitants use unimproved facilities. It is assumed here that only open defecation and unimproved facilities are causing unsanitary conditions, and that other, improved facilities do not. Thus of one m<sup>3</sup> wastewater disposed in Zambia only 0.56 m<sup>3</sup> lead to unsanitary conditions.<sup>77</sup> So the additional burden from unsanitary conditions in Zambia is 2.63 points per m<sup>3</sup> wastewater.<sup>78</sup>

For Switzerland no unsanitary conditions are assumed, as they are very unlikely.<sup>79</sup> In Zambia the damage from unsanitary conditions calculated above (2.63 points) absolutely dominate the burdens compared to the conventional LCIA burdens shown in Fig. 23.1 (0.0126 points). The total damage in Switzerland is 0.0288 points per m<sup>3</sup> and thus a factor of 92 below that of Zambia. This factor to a large degree represents the utility of wastewater sewering and treatment by avoiding unsanitary conditions and disease in humans. So the initially asked question can be answered: Wastewater treatment is beneficial regarding environmental damages mainly due to avoidance of human health damages.<sup>80</sup>

<sup>&</sup>lt;sup>72</sup> This assumption might be an underestimation or an overestimation. It is possible, that the unsanitary behaviour of a community affects only *a part* of that community, but it is also possible that the community is fully affected as well as additional outside communities. The answers depend on local circumstances.

<sup>&</sup>lt;sup>73</sup> 3.3 capita.days = 399.7 grams COD/m<sup>3</sup> wastewater / 120 grams COD/capita.day.

<sup>&</sup>lt;sup>74</sup> 0.000237 DALYs per m<sup>3</sup> = 0.026 DALY/capita.year /365.25 days/year  $\cdot$  3.3 days/m<sup>3</sup> wastewater.

<sup>&</sup>lt;sup>75</sup> Normalisation of 0.0202 DALY/year, weight 40%, scaling factor 1000.

<sup>&</sup>lt;sup>76</sup> Generally speaking, the occurrence of unsanitary conditions is influenced by the local population density. A collection of people living in close proximity are potentially more at risk to cause sanitation problems than those same people living scattered over a large area. The risk is obviously also influenced by levels of sewering and wastewater treatment as well as the sources and technologies of drinking water purification and supply.

 $<sup>^{77}</sup>$  0.56 = 0.193 + 0.366. Again, an approximate equivalence of rates for *population* and rates for *wastewater generated* is assumed here, as in chapter 4.2 'Adopting JMP data for industrial wastewater fate' on page 10.

<sup>&</sup>lt;sup>78</sup> 2.63 points = 4.695 points  $/m^3 \cdot 0.56 m^3$ .

<sup>&</sup>lt;sup>79</sup> Rare and temporary sanitary problems in Switzerland are usually associated with cattle manure excess.

<sup>&</sup>lt;sup>80</sup> Not everywhere in LCA is it proper to include the *utility* of an assessed product or process in the LCIA outcome, or, as here, to include the *absence* of an utility as an additional burden. But in wastewater treatment the process itself deliberately improves the environmental conditions not only in the conventional pollutant load of the water, but also regarding the microbial load, leading to unsanitary conditions.



Fig. 23.2 LCIA results for wastewater disposal in Switzerland and Zambia as in previous figure, but including estimate for burdens from unsanitary conditions in Zambia.

### 24 Outlook

The waste disposal model for wastewater in ecoinvent have developed over the years since their first inception in 1996 (Zimmermann et al. 1996). They have grown in scope and details, but owing to the goal of delivering background data on the fate of wastewater from industrial processes, also contain several simplifications and generalisations.

A simplification is for instance the breakdown of wastewater treatment sophistication into merely three kinds of plants. For instance oxidation lagoons<sup>81</sup> are disregarded here. Also treatment of sewage sludge is simplified to include merely three different fates (agriculture, landfill, incineration). Drying and utilization in cement kilns is not considered, neither is composting or dedicated mono sludge incinerators. In the future such technology fates could be added.

New in the present model is the widening of the scope to include wastewater fate in developing countries, where neither treatment plants nor sewers might be commonly available. This was based on data recorded for household situation from the WHO/UN monitoring of Sustainable Development Goals SDG, which was taken to be representative for the level of wastewater management sophistication in a country. In the future, a validation, refinement and update of wastewater fate based on recorded data for industrial sources of wastewater would be desirable.

The present model covers all water emissions of organic compounds with the sum parameter TOC. In chapter 19.3 'Relevance of emissions of organic compounds ' on page 67 an exemplary selection of certain organic compounds were found to be of little relevance. But for particular production process and activities single compounds could become relevant and would need to be added to the inventory to be more complete. To help calculate a compound's fate, data on elimination and degradation in WWTP stages are important. In the future generic information on single compound elimination per WWTP stage could be compiled to assist the addition of single compounds in wastewater disposal inventories. For general application, it is expected that inclusion of single compounds will remain a rare purpose, but for some particular processes it could be important.

<sup>&</sup>lt;sup>81</sup> Lagoons are basically artificial open ponds, in which the wastewater is allowed to settle and degrade for days before discharge. Periodically accumulated bottom sludge is removed.

In Switzerland a new waste law of 2016 "VEVA" tasks the WWTPs with introducing a form of phosphorus recycling by January 2026. Similar legislation is also in effect in some other European countries. The goal is to replace imported mineral phosphorus fertilizer with recycled, secondary phosphorus. As direct agricultural use of sewage sludge is prohibited in Switzerland, other solutions are sought. For instance isolation of phosphorus from the ash of separate sludge incinerators, or alternatively procedures that work with flows within the WWTP. At the moment no Swiss WWTP has yet installed phosphorus recycling beyond trials and demonstrations (PXCH 2021). The present wastewater disposal tool does not model the possibility of phosphorus recycling. In future updates this can be added to the model, when the selected technologies become clear.

The performance of wastewater treatment was based on Swiss plants. Swiss WWTPs have comparatively low elimination for nitrogen. The national average of nitrogen elimination in WWTPs is only 47% (Heldstab et al. 2013:49). This rate has increased since the 1985 due to international agreements like the OSPAR (Oslo-Paris Convention for the Protection of the Marine Environment of the North-East Atlantic). But compared to the level of nitrogen elimination in other European countries, where the weighted mean elimination is 80%<sup>82</sup>, the Swiss rate is low. This means that for some countries the modelled nitrogen elimination even for a 3-stage plant is underestimated. In the future, this might be refined, if more country data becomes available. But presently, asking the user of the tools to provide a country-specific elimination rate (not only for N, but also P, and organics) will in many cases be unfeasible, especially for low-income countries.

The disposal of treatment sludge in the model is based in fixed inventory factors used to derive wastespecific disposal inventories for landfilling and incineration. This does not necessarily reflect the technical parameters of a particular site currently chosen by the user, e.g. landfill gas capture rates in landfilling. In the future it is intended to integrate the landfilling and incineration model calculations with the sludge disposal inventory calculation. This would heed the parameters of a particular site for landfilling and incineration also in sludge disposal.

In EcoSpold1-Files the *disposal route* of infrastructure materials is constant and is not adapted to the country set by the used. It is therefore possible that for instance a disposal of PVC in a waste incinerator is inventoried in countries where there are no incinerators at all. In EcoSpold2/ecoinvent v3+ this issue is solved with market datasets establishing a country's technology mixes.

### 25 Glossary

Combined sewer Sewers that transport wastewater as well as rainwater from sealed built-up areas.

- Combined sewer overflow (CSO): In combined sewers the hydrological capacity of treatment plants at the end of the sewer can be exceeded during intense rain events. To avoid sewer overflows and flushing wastewater onto streets or even back into households, relief structures divert excess untreated wastewater into rivers. This excess relief is the combined sewer overflow, which emits untreated wastewater into rivers.
- ES1 EcoSpold1 (sometimes also named "EcoSpold 2000"). A file format for Life Cycle Assessment data. Within the context of this project, ES1-files refer to process

<sup>&</sup>lt;sup>82</sup> Calculated from 4772 European WWTPs with data on nitrogen elimination, weighted by nitrogen input, based on data from (EEA 2020).

inventory files. EcoSpold1 files were defined and used in the ecoinvent 2000 project (2003-2010) which released the ecoinvent database versions 1.0-2.2. Subsequent ecoinvent versions (3+) used EcoSpold2 (ES2). After 2010, non-canonical versions or dialects of the EcoSpold1 format (i.e. not strictly adhering to the original ecoinvent nomenclature) were created by various consulting firms (e.g. Pre, ESU-services, treeze).

- ES2 EcoSpold2. A file format for Life Cycle Assessment data. Within the context of this project, ES2-files refer to process inventory files. ES2 is the updated format of EcoSpold1 ( $\rightarrow$  ES1). EcoSpold2 is used by the ecoinvent database versions 3+ since 2010.
- PCE Per-capita equivalent (German: *EGW*, *Einwohnergleichwert*). Also p.e. for "population equivalent" is used. A measure of wastewater amounts. PCE can be based on pollutant contents (BOD, COD,  $N_{tot}$ , or  $P_{tot}$ ) or volume (hydraulic equivalent). For instance, one adult human is roughly producing 120 grams of COD daily. A wastewater flow with a certain COD content, can be converted to a PCE figure, E.g. 50'000 m<sup>3</sup> wastewater per day with a COD content of 300 mg/L would equate to 125'000 PCE<sub>COD</sub>. Different conversions to PCE are possible simultaneously. Since not only people, but also industrial activities can produce wastewater pollutants, the PCE treated in a WWTP does not necessarily equal the *actual number of inhabitants* connected to that WTWP. Alternatively PCEs can also be used to express the nominal design capacity of a plant (PCE<sub>dim</sub>), which needs to be discerned from the statistical data of PCEs actually treated. PCE characterizes wastewater before treatment and does not contain any information about pollution elimination efficiency of a WWTP.
- Sanitation Sanitation refers to public health conditions related to clean drinking water supply and adequate treatment and disposal of human excreta and sewage.
- Sewage or domestic/municipal wastewater, is a type of wastewater that is produced by a community of people. It consists mostly of grey water (from sinks, bathtubs, showers, dishwashers, and clothes washers, including soap and detergents), black water (the water used to flush toilets, combined with the human waste that it flushes away and toilet paper). I this report the more encompassing term "wastewater" is used.
- Sewer Collection and transport system for wastewater. Often in underground pipes, but also open sewers exist.
- Sewerage Term that in American English can signify the municipal wastewater itself ( $\rightarrow$  sewage), but in British English and professional technical American English means the *infrastructure* network transporting the wastewater  $\rightarrow$  sewer. Due to this ambiguity the term is best avoided altogether, and "wastewater" and "sewer" are used with advantage. In the ISIC classification of industrial activities the term "sewerage" (No. 3700) is used for any wastewater related activities lumping together sewer transports and wastewater treatment plants.
- sewering Term used in this report to describe the service or action of transporting wastewater in sewers.

- STP Sewage treatment plant. Facility to remove pollutants and nutrients from wastewater. In this report the more encompassing term wastewater treatment plant WWTP is used.
- Wastewater Generic term for liquid waste from domestic, municipal or industrial sources. Can include grey and black wastewater from households. In combined sewers wastewater can also include relatively unpolluted rainwater.

### 26 Appendix A

### 26.1 Papers with information on WWTP infrastructure data

Various papers could be found which contain information on WWTP infrastructure expenditures, which can be used for LC inventories.

#### 26.1.1 Risch et al. 2015 for Olwisheim, France (912 m<sup>3</sup>/day)

Risch et al. (2015) set out to assess the wastewater sewering and disposal services for Grabels, a town belonging to the metropolitan area of Montpellier in the south of France. Grabels represents 5200 PCE and this wastewater is sewered into the large, central WWTP of Montpellier-Lattes which treats a total of 470'000 PCE from the whole Montpellier metropolitan area. For the sewers, Risch et al. (2015) make a detailed evaluation of the 40 km of sewers built in Grabels. The WWTP infrastructure however they approximate with planning data for a small WWT plant with 5200 PCE capacity located in Olwisheim in the Alsace region in the east of France. Taking proxy data from another region is acceptable, but it is erroneous to inventory a plant of much smaller total capacity than the actually much larger plant used. The correct way to inventory the WWTP infrastructure used in Grabels would be to inventory an appropriate *fraction* of a 470'000 PCE plant. A convenient way to do this would be to calculate an infrastructure inventory for Montpellier-Lattes per PCE treated annually, and then multiply with the 5200 PCE produced in Grabels.<sup>83</sup> The Olwisheim plant is 90 times smaller in terms of treated wastewater than the actually used Montpellier-Lattes plant. There is considerable "material economy of scale" in WWTP infrastructure as shown in Fig. 15.1 on page 46. I.e. a large plant uses much less infrastructure materials per m<sup>3</sup> treated than a small plant. Assuming the exponent of -0.2689 in the regression of Fig. 15.1 is suitable, it can be estimated that Risch et al. overestimated the WWTP infrastructure in their study by a factor of 3.4.<sup>84</sup>

Regardless of this shortcoming for the goal of the paper in Risch et al. (2015), the data compiled for the Olwisheim plant is valuable as a data source for a 5200 PCE plant. According to Risch et al. this is for an activated sludge plant with physico-chemical sludge conditioning taken from a planning technical report.<sup>85</sup> A daily wastewater flow of 911.5 m<sup>3</sup> per day (332'930 m<sup>3</sup>/yr) in Olwisheim was estimated based on the average ratio of measured daily pollutant flow and concentration data available for the year 2011 (SIERM 2021).

<sup>&</sup>lt;sup>83</sup> Alternatively also the volume of wastewater treated annually can be used for scaling.

<sup>&</sup>lt;sup>84</sup> 3.4 =  $(5200^{-0.2689})/(470'000^{-0.2689})$ 

<sup>&</sup>lt;sup>85</sup> It is unclear whether this is planning data for the now existing Olwisheim plant, or planning data for a future replacement plant.

#### 26.1.2 Fahner et al. 1995 for Ergolz, Switzerland (10'951 m<sup>3</sup>/day)

Fahner et al. (1995) made an LCA of the Ergolz WWTP in Switzerland, comprising a detailed inventory of the WWTP infrastructure needs per year.

The data from Fahner et al. was used together with other sources in (Zimmermann et al. 1995) as a basis for extrapolation of WWTP infrastructure to other plant sizes. The same extrapolation was also used in (Doka 2003-IV). A problem with that extrapolation was that a purely linear dependency with plant size was assumed, while a concave trend is more likely (cf. Fig. 15.1 on page 46). A linear extrapolation tended to overestimate the infrastructure of mid-sized plants. The linear approach also implied that in plants the at the intercept of about 700'000-800'000 PCE, the infrastructure needs would become zero, and while this did not affect the application in (Zimmermann et al. 1995) or (Doka 2003-IV) it is nevertheless clearly unrealistic. Another problem in (Zimmermann et al. 1995) was that the plant size of Ergolz was underestimated to be 25'000 PCE. The Ergolz plant was extended from 1991-1994, and the inventory data from Fahner et al. referred to this extended plant with 40'000 PCE. Using a smaller plant size and material data from a larger plant overestimated the specific material input in the extrapolation. This error was also included in (Doka 2003-IV).

The data from (Fahner et al. 1995) is re-examined for this study, cf. Tab. 15.2 on page 47. The plant size of Ergolz is now based on the actually treated volume of wastewater of 4 million  $m^3$  annually (= 10'951 m<sup>3</sup>/day).

#### 26.1.3 Xue et al. 2019 for Mill Creek, USA (431'537 m<sup>3</sup>/day)

Xue et al. (2019) made an LCA and cost accounting of the urban water system of the Greater Cincinnati region. This includes the large WWTP Mill Creek, servicing that area. In part 2 of the publication (Arden et al. 2019) they publish in their supplementary material (sheet 'T-S6' of the Excel workbook) a granular inventory of the WWTP with materials and inputs used per m<sup>3</sup> treated, differentiated into nine plant parts<sup>86</sup> and five categories (tanks and buildings, motors, pumps, internal pipes). Xue et al. (2019) also list the lifetimes of the different parts (Tab S14), which allows to calculate masses of the standing plant and the Specific Concrete Mass SCM.

The data has some peculiarities. For the plant parts primary sedimentation, aeration and secondary clarifiers the volume of concrete used for tanks and buildings is factors larger than the volume of excavation work inventoried there. This seems only feasible, if the tanks had significant volumes aboveground. Considering available online photographs of the Mill Creek plant, this seems not to be the case. It is possible though, that the construction benefited from pre-existing ground depressions, reducing the excavation work required. Or that excavation work was used as a proxy for other construction energy used, as the inventory does not feature any corresponding energy inputs. The original concrete masses are used to calculate the Specific Concrete Mass SCM in Tab. 15.1 on page 45. The excavation figures have no bearing on the present work.

#### 26.1.4 Morera et al. 2020, four WWTPs in Spain

Morera et al. investigate four different existing WWTPs in Spain.

<sup>&</sup>lt;sup>36</sup> The nine parts are 1. Pumping at Wastewater Treatment Plant; 2. Screening and Grit Removal; 3. Primary Sedimentation; 4. Aeration; 5. Secondary Clarifiers; 6. Sludge Thickening and Dewatering; 7. Sludge Incineration; 8. Primary disinfection; 9. Release wastewater effluent.

| Plant                  | Capacity<br>in m <sup>3</sup> /day | Capacity in<br>m <sup>3</sup> /year | SCM<br>kg/(m³/yr) |
|------------------------|------------------------------------|-------------------------------------|-------------------|
| Navàs (Bagès)          | 1'500                              | 547'500                             | 4.97              |
| Balaguer (La Noguera)  | 3'750                              | 1'368'750                           | 4.21              |
| Manlleu (Osona)        | 14'400                             | 5'256'000                           | 3.27              |
| L'Escala (Alt Empordà) | 21'000                             | 7'665'000                           | 4.06              |

Tab. 26.1 Data for three different WWT plants for wastewater treated per day and per year, and calculated Specific Concrete Mass SCM.

They derive the plant's material inventories from construction budgets and have a very detailed inventory vector with 73 different materials and energy inputs. They have 13 different entries for mineral building materials.<sup>87</sup> The Specific Concrete Mass shown in Tab. 26.1 was calculated by heeding all four different concrete material types in their inventory. Compared to the correlation of SCM vs. treatment volume in Fig. 15.1 on page 46 the resulting figures seem (a) low and (b) have diminished economy-of-scale. Compared to the regression in Fig. 15.1 the SCM figures calculated for these plants is a factor 2.4 to 4 lower. This could partly be explained by the use of a capacity figure in Tab. 26.1, while in Fig. 15.1 actually treated annual volumes are used. Capacity figures are likely to be larger and therefore SCM calculated with actual volumes would become somewhat larger, maybe around 10–30%, making them still comparatively low by factors between 2 and 3. Consulting aerial photographs, the Spanish plants in Morera et al. seem much smaller in occupied area compared to their treatment size. Possibly, the hydraulic reserve capacities in Spain need not be as large as in the wetter climates of the plants used in Fig. 15.1, which would be a reason for smaller SCM, especially when considering combined sewering of wastewater and urban runoff. Also the four plants inventoried by Morera et al. appear to have no sludge treatment on-site, while those in Fig. 15.1 do. While in Fig. 15.1 the economy-of-scale of plants lead to an exponent of -0.2689 in the power law regression, this exponent is clearly lower in the four Spanish plants at around -0.1. It is unclear why these plants would not have as pronounced economy-of-scale as observed in other data, seeing that the fundamental driver of economy-of-scale here is lower concrete inputs due to larger volume pools.

Since the data of Morera et al. appears to be not comparable to the plants in Tab. 15.1 on page 45, owing to the various possibilities of discrepancies mentioned above, their data was not used for the present work, although their wide scope of materials appears as an attractive feature.

#### 26.1.5 Foley et al 2010 for two WWTPs, Australia (10'000 m<sup>3</sup>/day)

Foley et al. investigate nine scenarios for hypothetical wastewater treatment, and two of those have plants with a conventional activated sludge stage. They derive the required concrete on the engineering design data of the plant scenarios. The Specific Concrete Mass SCM calculated from their data is only 0.61 and 0.9 kg/( $m^3$ /year) for the two conventional plants.<sup>88</sup> This is about a factor 13 to 19 lower than expected based on the correlation in Fig. 15.1. One part of the explanation here is that the plants are designed to have only very short hydraulic retention time of 1.5 hours in the aerobic pool (see Foley et al. 2010:Tab 2). This is considerably lower than usual where hydraulic retention time in

<sup>&</sup>lt;sup>87</sup> The 13 entries are concrete, lime mortar, cement mortar, adhesive mortar, plaster, concrete high requirements, precast concrete, lightweight precast concrete, brick, gypsum plasterboard, sand, crushed rock, gravel.

<sup>&</sup>lt;sup>88</sup> These are cases 2 and 3. And even the scenario with the largest concrete input to treat the 10'000 m<sup>3</sup> per day – Case 9 with Bardenpho biological nutrient removal, activated sludge and sludge stabilisation lagoon – only gets to a SCM of 1.7 kg/(m<sup>3</sup>/year).

the activated sludge stage is between 6 and 24 hours, even when excluding the secondary settler. A low hydraulic retention time also makes the Specific Concrete Mass SCM smaller.

Since the data of Foley et al. appears to be not comparable to the plants in Tab. 15.1 on page 45, their data was not used for the present work.

### 27 Appendix B: Country data

This appendix contains the available country-specific data to be used with the wastewater disposal model. These are suggested values. The user of the inventory calculation tool can override these figures.

The data is presented in three parts:

- Tab. 27.1 contains the Gross National Income GNI data used for extrapolations, the share of urban population, and the national average of the share of wastewaster treated (%WWTP), the share of wastewaster not sewered (1-%Sew), and the share of wastewaster sewered but not treated (%Sew – %WWTP). Details to these parameters are in chapter 4.2 'Adopting JMP data for industrial wastewater fate' on page 12.
- 2. Tab. 27.2 contains the same three wastewater fate parameters, but for the rural respectively the urban territory of the country.
- Tab. 27.3 contains parameters for wastewater treatment, i.e. treatment levels (%1ST, %2ST, %3ST. See chapter 4.2.3), share of WWTP with anaerobic digestion (AD), share of energy utilization (CHP) in AD (see chapter 9), and disposal mix of sewage sludge (agriculture, landfill, or incineration. See chapter 17).

A suffix 'e' indicates that the figure was extrapolated using the procedures described in the chapters referenced above.

All the figures are also tabulated in the Excel workbook 'Central Repository' in the sheet 'GNIWWT'.

The countries in the tables are sorted by (1.) global region and (2.) country population, with small islands and sub-territories appended at the end. The global regions are in following order: Central and Eastern Europe; Commonwealth of Independent States; East Asia; Latin America and Caribbean; Middle East and North Africa; North America and Australia/New Zealand; Other Oceania; South Asia; Southeast Asia; Sub-Saharan Africa; Western Europe; Small Islands; Additional sub-territories already included above.

|                      |           | GNI \$/cap.yr    | % urban population  | Wastewater treated (NATIONAL) | not sewered<br>(NATIONAL) | sewered but not treated (NATIONAL) |
|----------------------|-----------|------------------|---------------------|-------------------------------|---------------------------|------------------------------------|
| Poland               | PL        | 15'492           | 60.105%             | 73.012%                       | 26.219%                   | 0.76915%                           |
| Romania              | RO        | 12'524           | 53.936%             | 45.785%                       | 48.752%                   | 5.4633%                            |
| Czech Rep.           | CZ        | 21'682           | 73.675%             | 88.376%                       | 10.85%                    | 0.77386%                           |
| Hungary              | HU        | 16'233           | 71.062%             | 77.928%                       | 18.093%                   | 3.979%                             |
| Serbia               | RS        | 6'580            | 55.942%             | 11.396%                       | 44.36%                    | 44.244%                            |
| Bulgaria             | BG        | 9'374            | 74.669%             | 55.864%                       | 22.771%                   | 21.365%                            |
| Slovakia             | SK        | 18'870           | 53.751%             | 65.881%                       | 30.677%                   | 3.4421%                            |
| Croatia              | HR        | 14'772           | 56.667%             | 39.352%                       | 42.367%                   | 18.281%                            |
| Bosnia Herzegovina   | BA        | 5'656            | 47.876%             | 4.6441%                       | 44.692%                   | 50.664%                            |
| Lithuania            | LI        | 18'953           | 67.516%             | 89.157%                       | 6.7837%                   | 4.0591%                            |
| Albania              | AL        | 5'134            | 59.383%             | 39.229%                       | 2.0153%                   | 58.756%                            |
| Latvia               | LV        | 17'598           | 68.075%             | 84.19%                        | 8.4015%                   | 7.4082%                            |
| North Macedonia      | MK        | 5'852            | 57.748%             | 6.041%                        | 26.264%                   | 67.695%                            |
| Siovenia             | 51        | 25'951           | 54.273%             | 54.041%                       | 45.473%                   | 0.48552%                           |
| Estonia              | EE<br>ME  | 23/343           | 68.717%             | 88.124%                       | 10.95%                    | 0.92581%                           |
| Nonterlegro          | IVIE      | 9060             | 00.477%             | 13.020%                       | 54.101%                   | 32.813%                            |
| Russia               | HU        | 21011            | 74.292%             | 0∠.433%<br>01.070%            | 21.030%                   | 23.931%                            |
| Uriallie             |           | 3 347            | 09.240%             | 7 470% 0                      | 40.910%                   | 15.009%                            |
| UZDEKISIAN           | 02        | 1512             | 50.55%              | 7.479%0                       | 77.305%                   | 1.0220%                            |
| Razakiisidii         |           | 9 094            | 79 1949/            | 33.247 %<br>76 1919/          | 7 02109/                  | 1.9339%                            |
| Azerbaijan           | A7        | 0.087            | 70.134%<br>EE 9499/ | 26 1109/                      | 7.9319%                   | 2 1004%                            |
| Azerbaijan           | AZ<br>T I | 4 4 3 0          | 06 0909/            | 2 0265%                       | 00.062%                   | 3.1994%                            |
| I djikisidi          | 1J<br>KC  | 1045             | 20.962%             | 3.2303%                       | 00.340%                   | 1 40989/                           |
| Kyrgyzsian           | KG<br>TM  | 1 243            | 30.133%             | 12.120%                       | 80.403%<br>71.2199/       | 1.4088%<br>5.9741% o               |
| Goorgio              | CE        | 0 987            | 51.155%             | 22.000%e                      | /1.310%                   | 3.0741%e                           |
| Georgia              | GE        | 4 491            | 38.231%             | 5.9044%<br>07.065%            | 48.21%                    | 43.880%                            |
| Armonio              |           | 3 130            | 42.007%             | 27.003%                       | 00.009%                   | 0.0037%                            |
| China                |           | 4 552            | 63.103%             | 51.551%                       | 30.23%                    | 0 10 45%                           |
| lanan                |           | 10 281           | 57.90%<br>01.525%   | 52.997%<br>76.997%            | 37.819%                   | 9.1845%                            |
| Japan<br>South Koroo | JP        | 39 899           | 91.535%             | 70.327%                       | 23.347%                   | 0.12375%                           |
| South Korea          |           | 52 37 5<br>E00   | 61.503%             | 99.209%                       | 0.73062%                  | 0%                                 |
| Taiwan               |           | 20/025           | 79.5%               | 58 901%0                      | 25 165% o                 | 16.034%                            |
| Hong Kong            | HK        | 20 923<br>50'753 | 100%                | 88 297%                       | 7 1276%                   | 4 575%                             |
| Mongolia             | MN        | 3919             | 69 363%             | 6 3656%                       | 79.000%                   | 14.726%                            |
| Macao                | MO        | 70'821           | 100%                | 89.966%                       | 8 0016%                   | 2 032%                             |
| Brazil               | BB        | 8'853            | 86 309%             | 37 524%                       | 33 544%                   | 28 932%                            |
| Mexico               | MX        | 0'124            | 79.867%             | 12 72%                        | 20 389%                   | 36.801%                            |
| Colombia             | CO        | 6'343            | 80 446%             | 11 82%                        | 22.699%                   | 65 481%                            |
| Argentina            | AR        | 11'130           | 91 749%             | 52.086%e                      | 42 78%                    | 5 1338%e                           |
| Peru                 | PF        | 6'576            | 77 72%              | 39 177%                       | 29 243%                   | 31.58%                             |
| Venezuela            | VE        | 11'780           | 88.183%             | 22.64%                        | 9.6427%                   | 67.717%                            |
| Chile                | CL        | 15'035           | 87.49%              | 72.522%                       | 11.579%                   | 15.899%                            |
| Ecuador              | FC        | 6'101            | 63 67%              | 16 603%                       | 36.376%                   | 47 02%                             |
| Guatemala            | GT        | 4'445            | 50.68%              | 27.332%e                      | 58.077%                   | 14.59%e                            |
| Cuba                 | CU        | 7'480            | 76.977%             | 20.974%                       | 50.097%                   | 28.929%                            |
| Bolivia              | BO        | 3'568            | 69.08%              | 10.802%                       | 51.879%                   | 37.319%                            |
| Dominican Rep.       | DO        | 7'754            | 80.277%             | 4.605%                        | 77.719%                   | 17.676%                            |
| Haiti                | HT        | 775              | 54.346%             | 0.12988%e                     | 99.34%                    | 0.53006%e                          |
| Honduras             | HN        | 2'679            | 56.457%             | 13.72%                        | 59.863%                   | 26.417%                            |
| Paraguay             | PY        | 4'166            | 61.3%               | 4.2199%                       | 91.184%                   | 4.5961%                            |
| El Salvador          | SV        | 4'589            | 71.275%             | 26.895%e                      | 59.405%                   | 13.7%e                             |
| Nicaragua            | NI        | 1'936            | 58.299%             | 9.5857%e                      | 75.618%                   | 14.796%e                           |
| Costa Rica           | CR        | 11'711           | 78.56%              | 10.494%                       | 77.022%                   | 12.485%                            |
| Puerto Rico          | PR        | 21'924           | 93.587%             | 30.67%                        | 5.6589%                   | 63.672%                            |
| Panama               | PA        | 14'856           | 67.365%             | 35.457%e                      | 62.916%                   | 1.6267%e                           |
| Uruguay              | UY        | 16'562           | 95.24%              | 58.278%e                      | 39.808%                   | 1.9146%e                           |
| Jamaica              | JM        | 5'631            | 55.378%             | 7.9084%                       | 77.339%                   | 14.753%                            |
| Trinidad & Tobago    | TT        | 16'362           | 53.205%             | 19.449%e                      | 79.887%                   | 0.66419%e                          |
| Guyana               | GY        | 4'756            | 26.538%             | 1.4444%e                      | 97.858%                   | 0.69782%e                          |
| Suriname             | SR        | 5'586            | 66.041%             | 0.96334%e                     | 98.674%                   | 0.36266%e                          |
| Cabo Verde           | CV        | 3'696            | 65.261%             | 14.094%e                      | 76.151%                   | 9.7554%e                           |
| Guadeloupe           | GP        | 25'479           | 98.463%             | 39.427%e                      | 60.326%                   | 0.24659%e                          |
| Belize               | BZ        | 4'653            | 45.601%             | 5.9369%e                      | 91.1%                     | 2.9629%e                           |
| Bahamas              | BS        | 25'054           | 82.925%             | 21.305%e                      | 78.551%                   | 0.1439%e                           |
| French Guiana        | GF        | 16'000           | 85.042%             | 43.586%e                      | 54.817%                   | 1.5972%e                           |
| Curacao              | CW        | 20'350           | 89.203%             | 17.404%e                      | 82.317%                   | 0.2787%e                           |
| Grenada              | GD        | 10'307           | 36.164%             | 6.0526%e                      | 93.234%                   | 0.71311%e                          |

## Tab. 27.1 Country data for Gross National Income GNI, urban population, and wastewater disposal parameters on a national average level. A suffix 'e' denotes extrapolated data.

|                          |          | GNI \$/cap.yr  | % urban            | Wastewater treated | not sewered         | sewered but not treated |
|--------------------------|----------|----------------|--------------------|--------------------|---------------------|-------------------------|
| Palostino                | PS       | 2'605          | 75 904%            | (NATIONAL)         | (NATIONAL)          | (NATIONAL)              |
| Falesune                 | FG       | 3 695<br>2'694 | 75.894%<br>42 705% | 30.830%<br>48.227% | 48.506%             | 14.057%                 |
| Turkev                   | TB       | 8'230          | 74 644%            | 58.52%             | 16 724%             | 24 756%                 |
| Iran                     | IR       | 5'341          | 74.394%            | 22.364%            | 73.182%             | 4.4547%                 |
| Algeria                  | DZ       | 4'022          | 72.052%            | 13.435%            | 16.326%             | 70.239%                 |
| Morocco                  | MA       | 3'211          | 61.908%            | 21.97%             | 44.608%             | 33.423%                 |
| Iraq                     | IQ       | 5'465          | 70.278%            | 15.008%            | 74.374%             | 10.618%                 |
| Saudi Arabia             | SA       | 22'669         | 83.622%            | 55.504%            | 44.496%             | 0%                      |
| Yemen                    | YE       | 864            | 36.016%            | 19.822%            | 70.727%             | 9.451%                  |
| Syria                    | SY       | 1'860          | 53.5%              | 27.599%е           | 27.822%             | 44.579%e                |
| Tunisia                  | TN       | 3'374          | 68.642%            | 54.543%            | 43.26%              | 2.197%                  |
| Israel                   | IL IO    | 42'736         | 92.336%            | 93.263%            | 0.84488%            | 5.8925%                 |
| Jordan                   | JU       | 5126           | 90.747%            | 03.081%            | 35.58%              | 0.73878%                |
| Libya<br>Emirates        |          | / 009          | 79.017%<br>86.248% | 90.216%            | 9.0606%             | 0 71473%                |
| Lebanon                  | LB       | 7'988          | 88.429%            | 11.664%            | 18.282%             | 70.054%                 |
| Oman                     | OM       | 13'646         | 83.56%             | 10.772%            | 89.228%             | 0%                      |
| Kuwait                   | KW       | 32'916         | 100%               | 100%               | 0%                  | 0%                      |
| Qatar                    | QA       | 69'282         | 99.078%            | 92.063%            | 7.9369%             | 0%                      |
| Bahrain                  | BH       | 19'566         | 89.186%            | 91.11%             | 8.8896%             | 0%                      |
| United States            | US       | 64'811         | 82.058%            | 81.166%            | 17.749%             | 1.0849%                 |
| Canada                   | CA       | 46'244         | 81.35%             | 67.756%            | 18.681%             | 13.563%                 |
| Australia                | AU       | 54'687         | 85.904%            | 70.479%            | 11.5%               | 18.021%                 |
| New Zealand              | NZ       | 42'290         | 86.466%            | 79.055%            | 16.243%             | 4.7017%                 |
| Fiji<br>Franch Dalamania | FJ       | 5'629          | 55.742%            | 12.368%e           | 78.433%e            | 9.1998%e                |
| New Caledonia            | PF<br>NC | 15 990         | 01.784%            | 15.985%e           | 83.428%<br>13.283%e | 0.5869%e                |
| Vanuatu                  | VU       | 3'230          | 25 163%            | 6 6014%e           | 43.203 %e           | 5 4666%e                |
| Samoa                    | WS       | 4'393          | 18.452%            | 0.11533%           | 99.769%             | 0.11533%                |
| Micronesia FSM           | FM       | 3'476          | 22.608%            | 7.4968%e           | 86.866%             | 5.637%e                 |
| Nauru                    | NR       | 14'230         | 100%               | 21.956%e           | 76.903%             | 1.141%e                 |
| Antarctica               | AQ       |                | 0%                 | 0%e                | 100%e               | 0%e                     |
| India                    | IN       | 2'120          | 33.6%              | 3.1842%            | 89.438%             | 7.378%                  |
| Pakistan                 | PK       | 1'596          | 36.442%            | 8.649%e            | 74.768%             | 16.583%e                |
| Bangladesh               | BD       | 1'890          | 35.858%            | 1.9063%e           | 94.76%              | 3.3341%e                |
| Afghanistan              | AF       | 575            | 25.25%             | 0.40061%e          | 97.402%             | 2.1978%e                |
| Nepal                    | NP       | 1'040          | 19.336%            | 1.2733%e           | 94.874%             | 3.8532%e                |
| Bhutan                   | BT       | 4 020          | 10.364%            | 2.594%             | 93.011%             | 2 6613%e                |
| Maldives                 | MV       | 8'549          | 39.38%             | 51 152%e           | 39.866%             | 8 9819%e                |
| Indonesia                | ID       | 4'061          | 54.659%            | 7.0561%e           | 88.657%             | 4.2868%e                |
| Philippines              | PH       | 4'043          | 46.682%            | 1.7896%            | 95.709%             | 2.5011%                 |
| Viet Nam                 | VN       | 2'612          | 35.213%            | 0.47903%e          | 99.002%             | 0.51873%e               |
| Thailand                 | TH       | 7'332          | 49.2%              | 6.9673%e           | 91.389%             | 1.6441%e                |
| Myanmar                  | MM       | 1'447          | 30.322%            | 0.0063723%e        | 99.98%              | 0.0136%e                |
| Malaysia                 | MY       | 11'225         | 75.447%            | 78.444%            | 20.818%             | 0.73809%                |
| Cambodia                 | KH       | 1'530          | 22.98%             | 4.7614%e           | 85.679%             | 9.5593%e                |
| Laos                     | LA       | 2'347          | 34.368%            | 0.53818%           | 98.886%             | 0.57541%                |
| Papua New Guinea         | PG       | 2'205          | 13.102%            | 1.8963%            | 96.078%             | 2.0255%                 |
| Timor-Leste              | 3G<br>TI | 2'095          | 30 212%            | 4 689%e            | 88 703%             | 6 6085%e                |
| Brunei                   | BN       | 28'389         | 77.312%            | 94.948%e           | 4.7%                | 0.35239%e               |
| Nigeria                  | NG       | 2'040          | 49.519%            | 3.1809%            | 89.983%             | 6.8363%                 |
| Ethiopia                 | ET       | 850            | 20.31%             | 0.41485%e          | 98.861%             | 0.72403%e               |
| Congo (Kinshasa)         | CD       | 480            | 43.88%             | 0.0087844%e        | 99.934%             | 0.057399%e              |
| South Africa             | ZA       | 6'074          | 65.85%             | 43.933%e           | 41.648%             | 14.419%e                |
| Tanzania                 | TZ       | 1'028          | 33.053%            | 0.25031%           | 99.398%             | 0.35164%                |
| Kenya                    | KE       | 1'823          | 26.562%            | 2.0301%e           | 94.615%             | 3.3554%e                |
| Sudan                    | SD       | 645            | 34.37%             | 0.17112%e          | 98.99%              | 0.83882%e               |
| Uganda                   | UG       | 627            | 23.196%            | 0.14059%           | 99.322%             | 0.53729%                |
| Ghana                    | GH<br>MZ | 1'966          | 55.407%<br>25.455% | 1.3007%e           | 96.727%             | 1.972%e                 |
| Madagascar               | MG       | 430            | 36 522%            | 0.1009%8           | 99.11%              | 1 1387%                 |
| Cote d'Ivoire            | CI       | 2'316          | 50.326%            | 2 8853%e           | 93 501%             | 3 614%e                 |
| Cameroon                 | CM       | 1'356          | 55.777%            | 0.12394%e          | 99.592%             | 0.28358%e               |
| Angola                   | AO       | 2'879          | 64.839%            | 6.4827%e           | 87.296%             | 6.2216%e                |
| Burkina Faso             | BF       | 704            | 28.743%            | 0.14363%e          | 99.211%             | 0.64561%e               |
| Niger                    | NE       | 423            | 16.35%             | 0.19415%           | 99.328%             | 0.47792%                |
| Malawi                   | MW       | 371            | 16.714%            | 0.22323%e          | 97.911%             | 1.8661%e                |
| Mali                     | ML       | 897            | 41.572%            | 0.38115%           | 98.82%              | 0.79933%                |
| Zambia                   | ZM       | 1'393          | 42.976%            | 2.8598%e           | 90.785%             | 6.3552%e                |
| Senegal                  | SN       | 1'111          | 46.74%             | 2.0536%            | 91.739%             | 6.2079%                 |

|                         |     | GNI \$/cap.yr    | % urban            | Wastewater treated  | not sewered        | sewered but not treated |
|-------------------------|-----|------------------|--------------------|---------------------|--------------------|-------------------------|
| Zimbabwe                | 7W  | 934              | 32 237%            | 4 0079%             | 74 423%            | (NATIONAL)<br>21 569%   |
| Rwanda                  | BW  | 773              | 17.125%            | 0.22187%e           | 98.87%             | 0.90774%e               |
| Chad                    | TD  | 700              | 22.858%            | 0.077761%e          | 99.571%            | 0.35129%e               |
| Guinea                  | GN  | 583              | 35.793%            | 0.31215%e           | 97.999%            | 1.6892%e                |
| South Sudan             | SS  | 790              | 19.346%            | 0.020516%e          | 99.897%            | 0.08214%e               |
| Burundi                 | BI  | 275              | 12.706%            | 0.036277%e          | 99.56%             | 0.4034%e                |
| Somalia                 | SO  | 150              | 44.391%            | 0.53665%e           | 88.993%            | 10.47%e                 |
| Benin                   | BJ  | 881              | 46.768%            | 0.30332%e           | 98.609%            | 1.0873%e                |
| Togo                    | TG  | 572              | 41.162%            | 0.044083%e          | 99.713%            | 0.24314%e               |
| Eritrea                 | ER  | 480              | 39.451%            | 0.40504%e           | 96.948%            | 2.6469%e                |
| Sierra Leone            | SL  | 596              | 41.636%            | 0.082712%           | 99.514%            | 0.40306%                |
| Cent. Alf. Rep.         | CG  | 420              | 40.98%             | 0.0057834%e         | 99.951%            | 0.042966%e              |
| Liberia                 | IB  | 345              | 50.439%            | 0.051219%e          | 90.720%            | 0.91509%e               |
| Mauritania              | MR  | 1'274            | 52.824%            | 0.76569%e           | 97.362%            | 1.8725%e                |
| Namibia                 | NA  | 4'943            | 49.005%            | 24.499%e            | 64.337%            | 11.165%e                |
| Botswana                | BW  | 7'344            | 68.7%              | 1.1074%e            | 98.632%            | 0.26051%e               |
| Lesotho                 | LS  | 1'266            | 27.73%             | 0.3484%e            | 98.794%            | 0.85799%e               |
| Gambia                  | GM  | 514              | 60.599%            | 0.356%e             | 97.465%            | 2.1785%e                |
| Guinea-Bissau           | GW  | 762              | 42.945%            | 0.60298%e           | 96.894%            | 2.5034%e                |
| Gabon                   | GA  | 7'946            | 88.976%            | 27.947%e            | 66.386%            | 5.667%e                 |
| Eswatini                | SZ  | 3'087            | 23.625%            | 3.1759%             | 89.796%            | 7.0284%                 |
| Mauritius               | MU  | 11'722           | 40.841%            | 16.509%             | 76.768%            | 6.723%                  |
| Djibouti                | DJ  | 3'310            | 77.648%            | 2.3274%             | 94.875%            | 2.7973%                 |
| Comoros                 | KM  | 742              | 28.784%            | 1.0042%e            | 94.716%            | 4.2794%e                |
| Equatorial Guinea       | GQ  | 5/219            | 71.646%            | 7.4774%e            | 89.388%            | 3.1348%e                |
| Mayotto                 | VT  | 12'820           | 46 395%            | 17 282%             | 81 523%            | 1 1953%6                |
| Sao Tome & Principe     | ST. | 2'070            | 71 968%            | 6 1193%             | 85 179%            | 8 7019%                 |
| Germany                 | DE  | 48'508           | 77.261%            | 95.535%             | 3.4352%            | 1.0297%                 |
| France                  | FR  | 42'029           | 80.18%             | 78.034%             | 18.384%            | 3.5819%                 |
| United Kingdom          | GB  | 41'395           | 83.143%            | 96.318%             | 2.9742%            | 0.70756%                |
| Italy                   | IT  | 34'335           | 70.144%            | 91.069%             | 6.3417%            | 2.5892%                 |
| Spain                   | ES  | 30'690           | 80.08%             | 96.62%              | 0.015625%          | 3.3642%                 |
| Netherlands             | NL  | 52'486           | 91.077%            | 97.256%             | 0.43431%           | 2.3094%                 |
| Portugal                | PT  | 23'251           | 64.652%            | 63.962%             | 35.801%            | 0.2373%                 |
| Greece                  | GR  | 19'990           | 78.724%            | 81.901%             | 17.361%            | 0.73819%                |
| Belgium                 | BE  | 47'302           | 97.961%            | 94.714%             | 4.7966%            | 0.48906%                |
| Sweden                  | SE  | 55'281           | 87.146%            | 85.604%             | 13.788%            | 0.6078%                 |
| Austria                 | AI  | 51'163           | 58.094%            | 92.483%             | 7.5174%            | 0%                      |
| Switzerland             |     | 84.925           | 73.761%            | 98.011%             | 1.8906%            | 0.098232%               |
| Einland                 |     | 02 302           | 07.737%<br>95.335% | 90.031%             | 0.4301%            | 0.91112%                |
| Ireland                 | IF  | 49 J24<br>64'798 | 62 947%            | 60.905%             | 33 814%            | 5 2812%                 |
| Norway                  | NO  | 82'763           | 81 871%            | 63 13%              | 16 168%            | 20 702%                 |
| Cvprus                  | CY  | 27'418           | 66.836%            | 51.775%             | 48.225%            | 0%                      |
| Luxembourg              | LU  | 75'070           | 90.727%            | 95.762%             | 1.7997%            | 2.4388%                 |
| Malta                   | MT  | 25'243           | 94.546%            | 92.984%             | 1.5%               | 5.5159%                 |
| Iceland                 | IS  | 72'153           | 93.773%            | 78.811%             | 6.4405%            | 14.748%                 |
| Andorra                 | AD  | 43'270           | 88.15%             | 100%                | 0.0000037%         | 0%                      |
| Greenland               | GL  | 19'290           | 86.574%            | 90.651%             | 8.4381%            | 0.91111%                |
| Liechtenstein           | LI  | 115'530          | 14.315%            | 98.7%               | 1.3%               | 0%                      |
| San Marino              | SM  | 52'140           | 97.072%            | 70.372%             | 15%                | 14.629%                 |
| Monaco                  | MC  | 186'710          | 100%               | 100%                | 0%                 | 0%                      |
| Vatican                 | VA  | 137'010          | 100%               | 90%e                | 8%e                | 2%e                     |
| Saba                    | BQ  | 23'000           | 74.838%            | 0.34815%e           | 99.648%            | 0.0034171%e             |
| Martinique              | MQ  | 29'090           | 89.018%            | 46.495%e            | 53.352%            | 0.15231%e               |
| Barbados                | BB  | 16'596           | 31.159%            | 3.0536%             | 96.887%            | 0.059381%               |
| SI LUCIA<br>Aruba       |     | 8'982            | 10.012%            | 4.3354%e<br>4.6701% | 94.970%<br>05.022% | 0.00019%0               |
| Virgin le (LIQ)         | VI  | 20010            | 43.233%            | 4.0721%             | 90.002%<br>58 370% | 0.2409%                 |
| St Vincent & Grenadines | VC  | 7510             | 51 784%            | 6 0559%e            | 92 578%            | 1.3665%                 |
| Antiqua & Barbuda       | AG  | 17'225           | 24.713%            | 1.0839%e            | 98.885%            | 0.03134%e               |
| Dominica                | DM  | 7'845            | 70.181%            | 12.311%e            | 85.131%            | 2.5582%e                |
| Bermuda                 | BM  | 123'770          | 100%               | 1.5%                | 95%                | 3.5%                    |
| Cayman Is.              | KY  | 47'320           | 100%               | 18.597%e            | 81.4%              | 0.0026152%e             |
| St Kitts & Nevis        | KN  | 16'904           | 30.773%            | 7.2469%e            | 92.53%             | 0.22287%e               |
| Turks & Caicos          | TC  | 28'340           | 92.817%            | 9.1657%e            | 90.8%              | 0.034313%e              |
| Sint Maarten (NL)       | SX  | 27'680           | 100%               | 9.0936%e            | 90.868%            | 0.038299%e              |
| Virgin Is. (Brit)       | VG  | 43'366           | 47.337%            | 22.222%e            | 77.771%            | 0.0061071%e             |
| St Martin (Fr)          | MF  | 15'400           | 0%                 | 43.895%e            | 38.839%e           | 17.266%e                |

|                                            |            | GNI \$/cap.yr | % urban population | Wastewater treated (NATIONAL) | not sewered<br>(NATIONAL) | sewered but not treated (NATIONAL) |
|--------------------------------------------|------------|---------------|--------------------|-------------------------------|---------------------------|------------------------------------|
| Anguilla                                   | AI         | 29'493        | 100%               | 1.1964%e                      | 98.8%                     | 0.0036485%e                        |
| St Barthelemy                              | BL         | 9'000         | 0%                 | 23.249%e                      | 62.955%e                  | 13.796%e                           |
| Montserrat                                 | MS         | 12'384        | 9.048%             | 13.201%e                      | 85.8%                     | 0.99902%e                          |
| US Minor Outlying Is.                      | UM         | 46'381        | 0%                 | 87.271%e                      | 8.5518%e                  | 4.1768%e                           |
| Solomon Is.                                | SB         | 2'010         | 23.286%            | 2.7715%e                      | 93.132%                   | 4.096%e                            |
| Guam                                       | GU         | 30'500        | 94.699%            | 71.218%e                      | 28.6%                     | 0.18173%e                          |
| Tonga                                      | то         | 4'736         | 23.169%            | 0%e                           | 100%                      | 0%e                                |
| Kiribati                                   | KI         | 3'224         | 53.262%            | 6.4426%e                      | 88.209%                   | 5.348%e                            |
| Marshall Is.                               | MH         | 5'296         | 76.634%            | 28.041%e                      | 60.471%                   | 11.488%e                           |
| American Samoa                             | AS         | 13'000        | 87.17%             | 22.842%                       | 51.34%                    | 25.818%                            |
| Northern Mariana Is.                       | MP         | 13'300        | 91.53%             | 50.432%e                      | 46.407%                   | 3.1618%e                           |
| Palau                                      | PW         | 12'501        | 79.365%            | 52.562%e                      | 43.556%                   | 3.8825%e                           |
| Wallis & Futuna                            | WF         | 12'640        | 0%                 | 35.269%e                      | 48.158%e                  | 16.573%e                           |
| Tuvalu                                     | TV         | 6'884         | 61.53%             | 0%                            | 26.171%                   | 73.829%                            |
| Cook Is.                                   | CK         | 20'722        | 74.835%            | 58.317%e                      | 25.561%e                  | 16.122%e                           |
| Norfolk Is.                                | NF         | 35'852        | 0%                 | 81.637%e                      | 10.596%e                  | 7.7673%e                           |
| Tokelau                                    | TK         | 6'275         | 0%                 | 14.371%e                      | 75.41%e                   | 10.218%e                           |
| Niue                                       | NU         | 5'800         | 44.057%            | 5.169%e                       | 93%                       | 1.831%e                            |
| Pitcairn Is.                               | PN         | 3'125         | 0%                 | 5.3375%e                      | 89.827%e                  | 4.8352%e                           |
| Bouvet Is.                                 | BV         |               | 0%                 | 0%e                           | 100%e                     | 0%e                                |
| Heard & McDonald Is.                       | HM         |               | 0%                 | 0%e                           | 100%e                     | 0%e                                |
| British Indian Ocean<br>Territory          | Ю          |               | 0%                 | 0%e                           | 100%e                     | 0%e                                |
| Christmas Is.                              | CX         | 46'364        | 100%               | 87.266%e                      | 8.5532%e                  | 4.1804%e                           |
| French Southern Territories                | TF         |               | 0%                 | 0%e                           | 100%e                     | 0%e                                |
| Reunion                                    | RE         | 26'369        | 99.503%            | 49.948%e                      | 49.786%                   | 0.2661%e                           |
| Seychelles                                 | SC         | 17'881        | 56.261%            | 16.348%e                      | 83.235%                   | 0.41694%e                          |
| St Helena, Ascension &<br>Tristan da Cunha | SH         | 11'275        | 39.696%            | 47.556%e                      | 47.9%                     | 4.5441%e                           |
| Aland Is.                                  | AX         | 55'829        | 39.723%            | 89.111%e                      | 8.1211%e                  | 2.7683%e                           |
| Jersey                                     | JE         | 62'009        | 31.2%              | 89.595%e                      | 8.0424%e                  | 2.3623%e                           |
| Isle of Man                                | IM         | 79'595        | 52.458%            | 89.965%e                      | 8.0017%e                  | 2.033%e                            |
| Guernsey                                   | GG         | 71'875        | 31.2%              | 89.894%e                      | 8.0073%e                  | 2.0987%e                           |
| Faroe Is.                                  | FO         | 51'375        | 41.914%            | 88.472%e                      | 8.251%e                   | 3.2773%e                           |
| Gibraltar                                  | GI         | 92'843        | 100%               | 100%e                         | 0%                        | 0.000008607%e                      |
| Svalbard & Jan Mayen                       | SJ         | 59'364        | 0%                 | 89.43%e                       | 8.0668%e                  | 2.503%e                            |
| Falkland Is.                               | FK         | 96'962        | 77.206%            | 100%e                         | 0%                        | 0.0000045016%e                     |
| Cocos Is.                                  | CC         | 7'632         | 75.3%              | 18.731%e                      | 69.114%e                  | 12.155%e                           |
| St Pierre & Miquelon                       | PM         | 31'548        | 89.901%            | 77.339%e                      | 12.659%e                  | 10.003%e                           |
| South Georgia & South<br>Sandwich Is.      | GS         |               | 0%                 | 0%e                           | 100%e                     | 0%e                                |
| Kosovo                                     | ХК         | 4'634         | 41%                | 9.4085%e                      | 83.064%e                  | 7.5277%e                           |
| Channel Is.                                | GB-<br>CHA | 65'430        | 30.914%            | 81.5%                         | 18.5%                     | 0%                                 |

## Tab. 27.2 Country data for wastewater disposal parameters for rural and urban territories. A suffix 'e' denotes extrapolated data.

|                    | Wastewater treated (RURAL) | not sewered<br>(RURAL) | sewered but not treated (RURAL) | Wastewater<br>treated (URBAN) | not sewered<br>(URBAN) | sewered but not treated (URBAN) |
|--------------------|----------------------------|------------------------|---------------------------------|-------------------------------|------------------------|---------------------------------|
| Poland             | 32.352%e                   | 65.72%e                | 1.9279%e                        | 100%e                         | 0%e                    | 0%e                             |
| Romania            | 9.903%e                    | 88.915%e               | 1.1817%e                        | 76.43%e                       | 14.45%e                | 9.12%e                          |
| Czech Rep.         | 67.813%                    | 31.7%                  | 0.48686%                        | 95.724%                       | 3.4%                   | 0.87641%                        |
| Hungary            | 59.947%                    | 38.877%                | 1.1754%                         | 85.251%                       | 9.6287%                | 5.1207%                         |
| Serbia             | 4.1748%                    | 79.616%                | 16.209%                         | 17.083%                       | 16.593%                | 66.324%                         |
| Bulgaria           | 21.032%                    | 69.898%                | 9.0709%                         | 67.68%                        | 6.55%                  | 25.77%                          |
| Slovakia           | 51.706%                    | 44.84%                 | 3.4538%                         | 78.078%                       | 18.49%                 | 3.4322%                         |
| Croatia            | 19.658%                    | 70.74%                 | 9.6022%                         | 54.412%                       | 20.67%                 | 24.918%                         |
| Bosnia Herzegovina | 2.4501%                    | 70.828%                | 26.722%                         | 7.0328%                       | 16.237%                | 76.73%                          |
| Lithuania          | 76.687%                    | 19.36%                 | 3.9531%                         | 95.157%                       | 0.7328%                | 4.1101%                         |
| Albania            | 38.022%                    | 4.4735%                | 57.505%                         | 40.055%                       | 0.33394%               | 59.611%                         |
| Latvia             | 72.237%                    | 22.163%                | 5.6004%                         | 89.796%                       | 1.9478%                | 8.2561%                         |
| North Macedonia    | 3.0901%                    | 62.16%                 | 34.75%                          | 8.2%                          | 0%                     | 91.8%                           |
| Slovenia           | 11.662%e                   | 88.233%e               | 0.10478%e                       | 89.747%e                      | 9.4465%e               | 0.80631%e                       |
| Estonia            | 64.864%                    | 34.514%                | 0.62222%                        | 98.713%                       | 0.22341%               | 1.064%                          |
| Montenegro         | 4.2646%                    | 85.028%                | 10.708%                         | 17.444%                       | 38.595%                | 43.96%                          |
| Russia             | 31.526%                    | 52.882%                | 15.592%                         | 59.667%                       | 10.824%                | 29.509%                         |
| Ukraine            | 1.5572%                    | 97.435%                | 1.0078%                         | 44.47%                        | 27.371%                | 28.16%                          |
| Uzbekistan         | 0.12358%e                  | 99.625%                | 0.25142%e                       | 14.674%e                      | 55.47%                 | 29.855%e                        |
| Kazakhstan         | 2.0169%                    | 97.914%                | 0.068978%                       | 59.973%                       | 36.705%                | 3.3216%                         |
| Belarus            | 60.217%                    | 27.122%                | 12.661%                         | 80.585%                       | 2.5615%                | 16.854%                         |
| Azerbaijan         | 5.685%                     | 93.925%                | 0.39041%                        | 60.677%                       | 33.857%                | 5.466%                          |

|                          | Wastewater treated (RURAL) | not sewered<br>(RURAL) | sewered but not treated (RURAL) | Wastewater<br>treated (URBAN) | not sewered<br>(URBAN) | sewered but not treated (URBAN) |
|--------------------------|----------------------------|------------------------|---------------------------------|-------------------------------|------------------------|---------------------------------|
| Tajikistan               | 0.046094%e                 | 99.791%                | 0.16258%e                       | 11.87%e                       | 46.263%                | 41.867%e                        |
| Kyrgyzstan               | 0.19178%                   | 99.801%                | 0.0072332%                      | 33.22%                        | 62.894%                | 3.8861%                         |
| Turkmenistan             | 1.316%e                    | 98.345%                | 0.33894%e                       | 43.332%e                      | 45.509%                | 11.16%e                         |
| Georgia                  | 0.56608%                   | 95.111%                | 4.323%                          | 9.7335%                       | 14.568%                | 75.699%                         |
| Moldova                  | 2.842%                     | 96.509%                | 0.64864%                        | 59.761%                       | 26.861%                | 13.378%                         |
| Armenia                  | 8.7567%                    | 80.358%                | 10.886%                         | 44.879%                       | 0.91983%               | 54.201%                         |
| China                    | 32.749%                    | 61.503%                | 5.7486%                         | 67.683%                       | 20.64%                 | 11.677%                         |
| Japan                    | 13.457%e                   | 86.521%e               | 0.022169%e                      | 82.142%e                      | 17.723%e               | 0.13532%e                       |
| South Korea              | 96.049%e                   | 3.951%e                | 0%e                             | 100%e                         | 0%e                    | 0%e                             |
| North Korea              | 4.7273%                    | 90.5%                  | 4.7727%                         | 33.439%e                      | 32.8%                  | 33.761%e                        |
| Taiwan                   | 11.026%e                   | 85.967%e               | 3.0067%e                        | 71.885%e                      | 8.5127%e               | 19.602%e                        |
| Hong Kong                | 88.297%                    | 7.1276%                | 4.575%                          | 88.297%                       | 7.1276%                | 4.575%                          |
| Mongolia                 | 0.87356%                   | 96.886%                | 2.2409%                         | 8.9072%                       | 70.59%                 | 20.503%                         |
| Macao                    | 89.966%e                   | 8.0016%e               | 2.032%e                         | 89.966%e                      | 8.0016%e               | 2.032%e                         |
| Brazil                   | 4.749%                     | 91.492%                | 3.7589%                         | 42.723%                       | 24.352%                | 32.925%                         |
| Mexico                   | 18.112%                    | 64.751%                | 17.136%                         | 48.923%                       | 9.2063%                | 41.87%                          |
| Colombia                 | 2.1305%                    | 86.143%                | 11.726%                         | 14.175%                       | 7.2781%                | 78.547%                         |
| Argentina                | 4.3516%e                   | 95.219%                | 0.42891%e                       | 56.448%e                      | 37.988%                | 5.5637%e                        |
| Peru                     | 10.247%                    | 82.641%                | 7.1124%                         | 47.471%                       | 13.936%                | 38.593%                         |
| Venezuela                | 4.0524%e                   | 81.6%e                 | 14.348%e                        | 25.131%e                      | 0%e                    | 74.869%e                        |
| Chile                    | 16.651%                    | 79.408%                | 3.9406%                         | 80.511%                       | 1.88%                  | 17.609%                         |
| Ecuador                  | 6.9558%                    | 73.198%                | 19.846%                         | 22.108%                       | 15.366%                | 62.526%                         |
| Guatemala                | 6.6993%e                   | 89.724%                | 3.5762%e                        | 47.411%e                      | 27.28%                 | 25.309%e                        |
| Cuba                     | 6.5166%                    | 85.085%                | 8.3987%                         | 25.298%                       | 39.633%                | 35.07%                          |
| Dolivia<br>Deminisen Den | 1.3110%                    | 94.768%                | 3.92%                           | 15.05%                        | 32.082%                | 52.208%                         |
| Dominican Rep.           | 0.025803%                  | 95.092%                | 3.9752%                         | 5.5073%                       | 73.45%                 | 21.043%                         |
| Handuraa                 | 0.033603%e                 | 99.010%                | 0.14011%                        | 0.20091%                      | 90.930%                | 0.05259%e                       |
| Boroquov                 | 2.1202%                    | 93.004%                | 3.9677%                         | 22.039%                       | 33.024%<br>95.6199/    | 43.710%                         |
| Falayuay<br>El Salvador  | 0.46103%0                  | 00 304%                | 0.23495%                        | 0.004%                        | 43 335%                | 10.127%                         |
| Nicaragua                | 0.40103 %e                 | 99.304 /8              | 0.23405%e                       | 16 288%                       | 43.323 %               | 25 1/2%                         |
| Costa Rica               | 2 7225%                    | 94.056%                | 3 2215%                         | 12 61/1%                      | 72 373%                | 15 013%                         |
| Puerto Rico              | 5 3583%0                   | 83 518%                | 11 12/%                         | 32 /0/%                       | 0.32366%4              | 67 272%                         |
| Panama                   | 3.6404%e                   | 96 193%                | 0.16701%e                       | 50.871%e                      | 46 796%                | 2 3339%e                        |
| Uruquay                  | 2.3861%e                   | 97 535%                | 0.078391%e                      | 61.071%e                      | 36 922%                | 2.0064%e                        |
| Jamaica                  | 2.5456%                    | 92 927%                | 4 5275%                         | 12 23%                        | 64 778%                | 22.993%                         |
| Trinidad & Tobago        | 4 2276%e                   | 95.628%e               | 0.14438%e                       | 32.836%e                      | 66.042%e               | 1 1214%e                        |
| Guvana                   | 0%e                        | 100%                   | 0%e                             | 5.4429%e                      | 91.928%                | 2.6295%e                        |
| Suriname                 | 0.5546%e                   | 99.237%                | 0.20878%e                       | 1.1735%e                      | 98.385%                | 0.44178%e                       |
| Cabo Verde               | 0.66408%e                  | 98.876%                | 0.45965%e                       | 21.243%e                      | 64.054%                | 14.704%e                        |
| Guadeloupe               | 6.7458%e                   | 93.212%e               | 0.04219%e                       | 39.938%e                      | 59.813%e               | 0.24978%e                       |
| Belize                   | 0.39117%e                  | 99.414%                | 0.19522%e                       | 12.553%e                      | 81.183%                | 6.2646%e                        |
| Bahamas                  | 3.909%e                    | 96.065%e               | 0.026401%e                      | 24.887%e                      | 74.945%e               | 0.16809%e                       |
| French Guiana            | 7.9165%e                   | 91.793%e               | 0.29009%e                       | 49.86%e                       | 48.313%e               | 1.8271%e                        |
| Curacao                  | 3.1008%e                   | 96.85%e                | 0.049654%e                      | 19.136%e                      | 80.558%e               | 0.30643%e                       |
| Grenada                  | 1.5055%e                   | 98.317%e               | 0.17738%e                       | 14.079%e                      | 84.262%e               | 1.6588%e                        |
| Palestine                | 4.525%                     | 91.012%                | 4.4631%                         | 47.099%                       | 35.006%                | 17.895%                         |
| Egypt                    | 32.638%                    | 54.835%                | 12.527%                         | 69.141%                       | 3.8498%                | 27.009%                         |
| Turkey                   | 30.258%                    | 56.273%                | 13.469%                         | 68.12%                        | 3.29%                  | 28.59%                          |
| Iran                     | 1.0717%                    | 98.553%                | 0.37518%                        | 29.692%                       | 64.449%                | 5.8588%                         |
| Algeria                  | 9.1618%                    | 40.594%                | 50.244%                         | 15.093%                       | 6.913%                 | 77.994%                         |
| Morocco                  | 0.053604%                  | 96.712%                | 3.2346%                         | 35.455%                       | 12.548%                | 51.998%                         |
| Iraq                     | 3.4702%                    | 94.026%                | 2.5036%                         | 19.887%                       | 66.063%                | 14.05%                          |
| Saudi Arabia             | 10.15%e                    | 89.85%e                | 0%e                             | 64.387%e                      | 35.613%e               | 0%e                             |
| Yemen                    | 0.38942%                   | 93.102%                | 6.5087%                         | 54.345%                       | 30.977%                | 14.678%                         |
| Syria                    | 17.207%e                   | 55%                    | 27.793%e                        | 36.631%e                      | 4.2%                   | 59.169%e                        |
| Tunisia                  | 7.3943%                    | 91.51%                 | 1.0962%                         | 76.082%                       | 21.218%                | 2.6998%                         |
| Israel                   | 89.354%                    | 5%                     | 5.6455%                         | 93.587%                       | 0.5%                   | 5.9129%                         |
| Jordan                   | 12.506%                    | 87.378%                | 0.11644%                        | 68.9%                         | 30.298%                | 0.80223%                        |
| Libya                    | 2.0061%e                   | 87.088%e               | 10.906%e                        | 12.985%e                      | 16.426%e               | 70.589%e                        |
| Emirates                 | 28.852%e                   | 65.951%e               | 5.1973%e                        | 100%e                         | 0%e                    | 0%e                             |
| Lebanon                  | 2.0854%e                   | 85.39%e                | 12.525%e                        | 12.917%e                      | 9.501%e                | 77.582%e                        |
| Oman                     | 1.5085%                    | 98.491%                | 0%                              | 12.595%                       | 87.405%                | 0%                              |
| Kuwait                   | 100%e                      | 0%e                    | 0%e                             | 100%e                         | 0%e                    | 0%e                             |
| Qatar                    | 15.711%e                   | 84.289%e               | 0%e                             | 92.774%e                      | 7.2264%e               | 0%e                             |
| Bahrain                  | 17.795%e                   | 82.205%e               | 0%e                             | 100%e                         | 0%e                    | 0%e                             |
| United States            | 30.59%                     | 69.001%                | 0.40888%                        | 92.224%                       | 6.5432%                | 1.2327%                         |
| Canada                   | 48.154%                    | 42.207%                | 9.6391%                         | 72.25%                        | 13.287%                | 14.462%                         |
| Australia                | 12.749%e                   | 81.583%e               | 5.6672%e                        | 79.952%e                      | 0%e                    | 20.048%e                        |
| New Zealand              | 14.263%e                   | 84.888%e               | 0.84829%e                       | 89.197%e                      | 5.4982%e               | 5.3049%e                        |
| Fiji<br>Franch Dat       | 2.6429%e                   | 95.391%e               | 1.966%e                         | 20.089%e                      | 64.968%e               | 14.943%e                        |
| rencn Polynesia          | 3.2876%e                   | 96.592%e               | 0.12071%e                       | 23.839%e                      | /5.286%e               | 0.87526%e                       |

|                         | Wastewater treated (RURAL) | not sewered<br>(RURAL) | sewered but not<br>treated (RURAL) | Wastewater<br>treated (URBAN) | not sewered<br>(URBAN) | sewered but not<br>treated (URBAN) |
|-------------------------|----------------------------|------------------------|------------------------------------|-------------------------------|------------------------|------------------------------------|
| New Caledonia           | 7.7669%e                   | 88.893%e               | 3.3402%e                           | 53.163%e                      | 23.974%e               | 22.863%e                           |
| Vanuatu                 | 6.0201%e                   | 88.995%                | 4.9853%e                           | 8.33%e                        | 84.772%                | 6.8981%e                           |
| Samoa                   | 0.0868%                    | 99.826%                | 0.0868%                            | 0.2414%                       | 99.517%                | 0.2414%                            |
| Micronesia FSM          | 2.1636%e                   | 96.21%e                | 1.6268%e                           | 25.754%e                      | 54.882%e               | 19.365%e                           |
| Nauru                   | 21.956%e                   | 76.903%                | 1.141%e                            | 21.956%e                      | 76.903%                | 1.141%e                            |
| Antarctica              | 0%e                        | 100%e                  | 0%e                                | 0%e                           | 100%e                  | 0%e                                |
| India                   | 0.32375%                   | 99.045%                | 0.63162%                           | 8.837%                        | 70.453%                | 20.71%                             |
| Pakistan                | 1.8415%e                   | 94.628%                | 3.5307%e                           | 20.522%e                      | 40.131%                | 39.347%e                           |
| Bangladesh              | 0.051472%                  | 99.859%                | 0.090021%                          | 5.2243%e                      | 85.639%                | 9.137%e                            |
| Afghanistan             | 0.11193%e                  | 99.274%                | 0.61407%e                          | 1.2552%e                      | 91.859%                | 6.8862%e                           |
| Nepai<br>Sri Lanko      | 0.43402%e                  | 98.253%                | 0.074069/ 2                        | 4.7745%e                      | 80.777%                | 14.448%e                           |
| Shutan                  | 0.60625%0                  | 97.703%                | 0.87490%e                          | 7.7940%e                      | 87.411%                | 4.7943%e                           |
| Maldivos                | 20 123%0                   | 90.00%                 | 0.34375%e                          | 0.4043%e                      | 07.7%                  | 14.036%                            |
| Indonesia               | 8 /197% 0                  | 86.465%                | 5 1153%6                           | 5 925%                        | 90.475%                | 3 5006%                            |
| Philippines             | 1 2897%                    | 96 958%                | 1 7524%                            | 2 3605%                       | 94 283%                | 3.3563%                            |
| Viet Nam                | 0.28841%e                  | 99.399%                | 0.31231%e                          | 0.82975%e                     | 98.272%                | 0.89852%e                          |
| Thailand                | 4.3789%e                   | 94.588%                | 1.0333%e                           | 9.6398%e                      | 88.085%                | 2.2747%e                           |
| Myanmar                 | 0.0091454%e                | 99.971%                | 0.019518%e                         | 0%e                           | 100%                   | 0%e                                |
| Malaysia                | 14.941%e                   | 84.787%e               | 0.27142%e                          | 99.11%e                       | 0%e                    | 0.88996%e                          |
| Cambodia                | 1.1399%e                   | 96.572%                | 2.2885%e                           | 16.899%e                      | 49.173%                | 33.928%e                           |
| Laos                    | 0.32568%                   | 99.32%                 | 0.35475%                           | 0.94397%                      | 98.059%                | 0.99679%                           |
| Papua New Guinea        | 0.47465%                   | 99%                    | 0.52535%                           | 11.325%                       | 76.7%                  | 11.975%                            |
| Singapore               | 100%                       | 0%                     | 0%                                 | 100%                          | 0%                     | 0%                                 |
| Timor-Leste             | 3.457%e                    | 91.671%                | 4.8722%e                           | 7.5347%e                      | 81.846%                | 10.619%e                           |
| Brunei                  | 77.731%e                   | 20.716%e               | 1.5532%e                           | 100%e                         | 0%e                    | 0%e                                |
| Nigeria                 | 1.6594%                    | 95.722%                | 2.6188%                            | 4.732%                        | 84.132%                | 11.136%                            |
| Ethiopia                | 0.26182%                   | 99.281%                | 0.45694%                           | 1.0153%e                      | 97.213%                | 1.772%e                            |
| Congo (Kinshasa)        | 0.015653%e                 | 99.882%                | 0.10228%e                          | 0%e                           | 100%                   | 0%e                                |
| South Africa            | 3.5332%e                   | 95.307%                | 1.1596%e                           | 64.884%e                      | 13.82%                 | 21.296%e                           |
| Tanzania                | 0.070221%                  | 99.883%                | 0.046574%                          | 0.61506%                      | 98.415%                | 0.96954%                           |
| Kenya                   | 0.038761%e                 | 99.897%                | 0.064065%e                         | 7.5357%e                      | 80.009%                | 12.455%e                           |
| Sudan                   | 0.023092%e                 | 99.864%                | 0.1132%e                           | 0.45378%e                     | 97.322%                | 2.2244%e                           |
| Uganda                  | 0.054839%                  | 99.812%                | 0.13333%                           | 0.42451%                      | 97.701%                | 1.8748%                            |
| Ghana                   | 0.17311%e                  | 99.564%                | 0.26246%e                          | 2.2081%e                      | 94.444%                | 3.3479%e                           |
| Mozambique              | 0%                         | 100%                   | 0%                                 | 0.30714%e                     | 97.49%                 | 2.2025%e                           |
| Madagascar              | 0.091377%e                 | 99.268%                | 0.6403%e                           | 0.28614%e                     | 97.709%                | 2.005%e                            |
| Colle d'Ivoire          | 0.4396%e                   | 99.01%                 | 0.025956%                          | 5.2994%e                      | 88.063%                | 0.0378%e                           |
| Angola                  | 0.0113%e                   | 99.903%                | 0.025856%e                         | 0.21325%e                     | 99.299%                | 0.48792%e                          |
| Aliguia<br>Burkina Eaco | 0.09525%e                  | 100%                   | 0%0                                | 9.0211%                       | 07.054%                | 9.2330%e                           |
| Niger                   | 0.063981%                  | 99 785%                | 0 15131%                           | 0.49909%                      | 96 991%                | 2.2401%e                           |
| Malawi                  | 0.10175%e                  | 99.048%                | 0.85059%e                          | 0.82857%e                     | 92 245%                | 6.9266%e                           |
| Mali                    | 0%                         | 100%                   | 0%                                 | 0.91684%                      | 97 16%                 | 1.9228%                            |
| Zambia                  | 0.15453%e                  | 99.502%                | 0.34341%e                          | 6.4494%e                      | 79.218%                | 14.332%e                           |
| Senegal                 | 0.08771%                   | 99.691%                | 0.22098%                           | 4.2937%                       | 82.676%                | 13.03%                             |
| Zimbabwe                | 0.32482%                   | 98.426%                | 1.2488%                            | 11.75%                        | 23.967%                | 64.283%                            |
| Rwanda                  | 0.024767%e                 | 99.874%                | 0.10133%e                          | 1.1757%e                      | 94.014%                | 4.8103%e                           |
| Chad                    | 0%e                        | 100%                   | 0%e                                | 0.34019%e                     | 98.123%                | 1.5368%e                           |
| Guinea                  | 0.070404%e                 | 99.549%                | 0.381%e                            | 0.7458%e                      | 95.218%                | 4.036%e                            |
| South Sudan             | 0.0083968%e                | 99.958%                | 0.033618%e                         | 0.071042%e                    | 99.645%                | 0.28443%e                          |
| Burundi                 | 0%e                        | 100%                   | 0%e                                | 0.28551%e                     | 96.54%                 | 3.1748%e                           |
| Somalia                 | 0.11151%e                  | 97.713%                | 2.1755%e                           | 1.0692%e                      | 78.07%                 | 20.861%e                           |
| Benin                   | 0.075169%e                 | 99.655%                | 0.26946%e                          | 0.56301%e                     | 97.419%                | 2.0182%e                           |
| Togo                    | 0.003231%e                 | 99.979%                | 0.01782%e                          | 0.10248%e                     | 99.332%                | 0.56521%e                          |
| Eritrea                 | 0%e                        | 100%                   | 0%e                                | 1.0432%e                      | 92.14%                 | 6.8171%e                           |
| Sierra Leone            | 0.0068527%                 | 99.949%                | 0.04455%                           | 0.18905%                      | 98.905%                | 0.90561%                           |
| Cent. Afr. Rep.         | 0.0013114%e                | 99.989%                | 0.0097425%e                        | 0.012321%e                    | 99.896%                | 0.091538%e                         |
| Congo (Brazzaville)     | 0.10069%e                  | 99.641%                | 0.25842%6                          | 0.48603%e                     | 98.267%                | 1.24/4%e                           |
| Liberia                 | 0.001/96%6                 | 99.982%                | 0.010089%6                         | 0.099283%e                    | 99.011%                | 0.00939%0                          |
| Namibia                 | 0.020239%0                 | 39.913%<br>03.77%      | 0.001723%e                         | 1.421%0                       | 33.003%                | ৩.4897%<br>२० ७८३% ०               |
| Botswana                | 16101%a                    | 99.8%                  | 0.03800%                           | 1 5381%                       | 98 1%                  | 0.36185%                           |
| Lesotho                 | 0.00760%                   | 99.0 %<br>99.662%      | 0.24058%                           | 1 0018%                       | 96 531%                | 2 4671%p                           |
| Gambia                  | 0.0039318%                 | 99.972%                | 0.024061%e                         | 0.58491%e                     | 95 836%                | 3.5794%e                           |
| Guinea-Bissau           | 0.18317%-                  | 99 056%                | 0.76046%e                          | 1 1607%                       | 94 02%                 | 4.819%e                            |
| Gabon                   | 7,199%e                    | 91.341%                | 1,4598%e                           | 30.517%e                      | 63.294%                | 6,1883%e                           |
| Eswatini                | 1.0048%                    | 97,453%                | 1.542%                             | 10.195%                       | 65.041%                | 24.765%                            |
| Mauritius               | 3.845%                     | 94,585%                | 1.5696%                            | 34.852%                       | 50.96%                 | 14.188%                            |
| Djibouti                | 0%                         | 100%                   | 0%                                 | 2.9974%                       | 93.4%                  | 3.6026%                            |
| Comoros                 | 0.76735%e                  | 95.963%                | 3.2699%e                           | 1.5903%e                      | 91.633%                | 6.7768%e                           |
| Equatorial Guinea       | 4.6504%e                   | 93.4%                  | 1.9496%e                           | 8.5962%e                      | 87.8%                  | 3.6038%e                           |
|                         |                            |                        |                                    |                               |                        |                                    |

|                                   | Wastewater treated (RURAL) | not sewered<br>(RURAL) | sewered but not<br>treated (RURAL) | Wastewater<br>treated (URBAN) | not sewered<br>(URBAN) | sewered but not<br>treated (URBAN) |
|-----------------------------------|----------------------------|------------------------|------------------------------------|-------------------------------|------------------------|------------------------------------|
| Western Sahara                    | 0.69459%e                  | 98.637%e               | 0.66836%e                          | 4.3403%e                      | 91.483%e               | 4.1765%e                           |
| Mayotte                           | 3.9459%e                   | 95.781%e               | 0.27291%e                          | 32.691%e                      | 65.048%e               | 2.2609%e                           |
| Sao Tome &                        | 3.3527%e                   | 91.88%                 | 4.7677%e                           | 7.1968%e                      | 82.569%                | 10.234%e                           |
| Principe                          | 0.4 700/                   | 14.0000/               | 1 10000/                           | 00.0000/                      | 0.00/                  | 1 000 40/                          |
| Erance                            | 84.79%<br>14.511%e         | 14.088%<br>84.823%e    | 1.1222%<br>0.66607%e               | 98.098%<br>93.736%e           | 0.3%<br>1.9611%e       | 1.0024%<br>4.3027%e                |
| United Kingdom                    | 83 706%                    | 16 041%                | 0.25264%                           | 98 875%                       | 0.325%                 | 0.7998%                            |
| Italy                             | 90.332%                    | 7.1%                   | 2.5681%                            | 91.383%                       | 6.019%                 | 2.5982%                            |
| Spain                             | 96.713%                    | 0%                     | 3.2872%                            | 96.597%                       | 0.019506%              | 3.3834%                            |
| Netherlands                       | 95.014%                    | 4.8673%                | 0.11861%                           | 97.476%                       | 0%                     | 2.524%                             |
| Portugal                          | 30.983%                    | 68.954%                | 0.063555%                          | 81.993%                       | 17.675%                | 0.33229%                           |
| Greece                            | 36.888%                    | 62.415%                | 0.69731%                           | 94.067%                       | 5.1842%                | 0.74924%                           |
| Belgium                           | 16.239%e                   | 83.677%e               | 0.083853%e                         | 96.348%e                      | 3.1548%e               | 0.4975%e                           |
| Sweden                            | 75.172%                    | 24.564%                | 0.26402%                           | 87.143%                       | 12.199%                | 0%                                 |
| Switzerland                       | 92 702%                    | 7 2054%                | 0.092981%                          | 99.9%                         | 0%                     | 0.1001%                            |
| Denmark                           | 23.636%e                   | 68.922%e               | 7.4419%e                           | 100%e                         | 0%e                    | 0%e                                |
| Finland                           | 19.577%                    | 80.316%                | 0.1075%                            | 95.783%                       | 3.6842%                | 0.53262%                           |
| Ireland                           | 21.182%                    | 77.772%                | 1.0455%                            | 84.287%                       | 7.9387%                | 7.7745%                            |
| Norway                            | 11.642%e                   | 84.54%e                | 3.8178%e                           | 74.532%e                      | 1.0275%e               | 24.441%e                           |
| Cyprus                            | 9%                         | 91%                    | 0%                                 | 73%                           | 27%                    | 0%                                 |
| Luxembourg                        | 79.865%                    | 19.163%                | 0.97151%                           | 97.386%                       | 0.025%                 | 2.5888%                            |
| Malta                             | 93.025%                    | 0%                     | 6.975%<br>2.5746% c                | 92.982%                       | 0.046547%              | 6.9718%                            |
| Andorra                           | 10.758%e                   | 03.008%e               | ∠.J/40%e                           | 100%                          | 1.3122%8               | 15.557 %e                          |
| Greenland                         | 30.365%e                   | 62.849%e               | 6.7862%e                           | 100%e                         | 0%e                    | 0%e                                |
| Liechtenstein                     | 98.483%e                   | 1.5172%e               | 0%e                                | 100%e                         | 0%e                    | 0%e                                |
| San Marino                        | 12.111%e                   | 85.371%e               | 2.5176%e                           | 72.129%e                      | 12.877%e               | 14.994%e                           |
| Monaco                            | 100%                       | 0%                     | 0%                                 | 100%                          | 0%                     | 0%                                 |
| Vatican                           | 90%e                       | 8%e                    | 2%е                                | 90%e                          | 8%e                    | 2%e                                |
| Bonaire, Sint<br>Eustatius & Saba | 0.066523%e                 | 99.933%e               | 0.00065294%e                       | 0.44283%e                     | 99.553%e               | 0.0043465%e                        |
| Martinique                        | 8.2906%e                   | 91.682%e               | 0.027158%e                         | 51.209%e                      | 48.624%e               | 0.16774%e                          |
| Barbados                          | 0.79763%e                  | 99.187%e               | 0.015511%e                         | 8.0377%e                      | 91.806%e               | 0.1563%e                           |
| St Lucia                          | 3.1943%e                   | 96.299%                | 0.50706%e                          | 9.3249%e                      | 89.195%                | 1.4802%e                           |
| Aruba                             | 1.093%e                    | 98.85%e                | 0.057524%e                         | 9.3602%e                      | 90.147%e               | 0.49264%e                          |
| Virgin Is. (US)                   | 6.8113%e                   | 92.792%e               | 0.39697%e                          | 40.825%e                      | 56.796%e               | 2.3793%e                           |
| St Vincent &<br>Grenadines        | 1.3294%e                   | 98.371%e               | 0.29998%e                          | 10.457%e                      | 87.184%e               | 2.3596%e                           |
| Antigua & Barbuda                 | 0.30451%e                  | 99.687%e               | 0.0088045%e                        | 3.4583%e                      | 96.442%e               | 0.099993%e                         |
| Dominica                          | 2.4119%e                   | 97.087%e               | 0.50119%e                          | 16.517%e                      | 80.051%e               | 3.4322%e                           |
| Cayman Is                         | 19.507% 0                  | 95%                    | 3.3%<br>0.0026152%o                | 19 507% 0                     | 90%                    | 0.0026152%<br>0.0026152%           |
| St Kitts & Nevis                  | 1.9006%e                   | 98.041%e               | 0.058451%e                         | 19 274%e                      | 80 133%e               | 0.59276%e                          |
| Turks & Caicos                    | 1.6068%e                   | 98.387%e               | 0.0060152%e                        | 9.7507%e                      | 90.213%e               | 0.036503%e                         |
| Sint Maarten (NL)                 | 9.0936%e                   | 90.868%e               | 0.038299%e                         | 9.0936%e                      | 90.868%e               | 0.038299%e                         |
| Virgin Is. (Brit)                 | 5.0379%e                   | 94.961%e               | 0.0013845%e                        | 41.34%e                       | 58.648%e               | 0.011361%e                         |
| St Martin (Fr)                    | 43.895%e                   | 38.839%e               | 17.266%e                           | 43.895%e                      | 38.839%e               | 17.266%e                           |
| Anguilla                          | 1.1964%e                   | 98.8%                  | 0.0036485%e                        | 1.1964%e                      | 98.8%                  | 0.0036485%e                        |
| St Barthelemy                     | 23.249%e                   | 62.955%e               | 13.796%e                           | 23.249%e                      | 62.955%e               | 13.796%e                           |
| Wontserrat                        | 4.8669%e                   | 94.335%6               | U./9/64%e                          | 96.977%e                      | U%e                    | 3.0233%e                           |
| ls.                               | 01.211/08                  | 0.0010708              | T. 1700 /08                        | 07.271/08                     | 0.0010708              | T. 1 / 00 /00                      |
| Solomon Is.                       | 0.80054%e                  | 98.016%                | 1.1831%e                           | 9.2646%e                      | 77.043%                | 13.692%e                           |
| Guam                              | 12.382%e                   | 87.586%e               | 0.031596%e                         | 74.512%e                      | 25.298%e               | 0.19013%e                          |
| Tonga                             | 0%e                        | 100%                   | 0%e                                | 0%e                           | 100%                   | 0%e                                |
| Kiribati<br>Maraba'' I-           | 1.3999%e                   | 97.438%e               | 1.1621%e                           | 10.868%e                      | 80.111%e               | 9.0212%e                           |
| Marshall Is.                      | 1.881%e                    | 97.348%                | 0.7706%e                           | 36.017%e                      | 49.227%                | 14./56%e                           |
| Northern Mariana Is               | 4.1077%e<br>8.8913%e       | 91.249%e<br>90.551%a   | 4.04∠9%e<br>0.55744%≏              | ∠ວ.ວ∀9%e<br>54.276%≏          | 40.400%e<br>40.300%a   | 20.900%e<br>3.4028%e               |
| Palau                             | 11.175%e                   | 88%                    | 0.82541%e                          | 63.323%e                      | 32%                    | 4.6773%e                           |
| Wallis & Futuna                   | 35.269%e                   | 48.158%e               | 16.573%e                           | 35.269%e                      | 48.158%e               | 16.573%e                           |
| Tuvalu                            | 0%                         | 37%                    | 63%                                | 0%                            | 19.4%                  | 80.6%                              |
| Cook Is.                          | 11.143%e                   | 85.776%e               | 3.0807%e                           | 74.181%e                      | 5.3117%e               | 20.508%e                           |
| Norfolk Is.                       | 81.637%e                   | 10.596%e               | 7.7673%e                           | 81.637%e                      | 10.596%e               | 7.7673%e                           |
| Tokelau                           | 14.371%e                   | 75.41%e                | 10.218%e                           | 14.371%e                      | 75.41%e                | 10.218%e                           |
| Niue                              | 1.2019%e                   | 98.372%e               | 0.42572%e                          | 10.206%e                      | 86.178%e               | 3.6154%e                           |
| Pitcairn Is.                      | 5.3375%e                   | 89.827%e               | 4.8352%e                           | 5.3375%e                      | 89.827%e               | 4.8352%e                           |
| Heard & McDonald                  | 0%0                        | 100%e                  | 0%e                                | 0%0                           | 100%e                  | 0%e                                |
| Is.                               | 0.00                       |                        | 0.00                               | 0.00                          | 100/00                 | 0/30                               |
| British Indian Ocean<br>Territory | 0%e                        | 100%e                  | 0%e                                | 0%e                           | 100%e                  | 0%e                                |
| Christmas Is.                     | 87.266%e                   | 8.5532%e               | 4.1804%e                           | 87.266%e                      | 8.5532%e               | 4.1804%e                           |

|                                               | Wastewater treated (RURAL) | not sewered<br>(RURAL) | sewered but not treated (RURAL) | Wastewater<br>treated (URBAN) | not sewered<br>(URBAN) | sewered but not<br>treated (URBAN) |
|-----------------------------------------------|----------------------------|------------------------|---------------------------------|-------------------------------|------------------------|------------------------------------|
| French Southern<br>Territories                | 0%e                        | 100%e                  | 0%e                             | 0%e                           | 100%e                  | 0%e                                |
| Reunion                                       | 8.5087%e                   | 91.446%e               | 0.04533%e                       | 50.155%e                      | 49.578%e               | 0.2672%e                           |
| Seychelles                                    | 3.4817%e                   | 96.43%e                | 0.088794%e                      | 26.351%e                      | 72.977%e               | 0.67204%e                          |
| St Helena,<br>Ascension & Tristan<br>da Cunha | 13.034%e                   | 79.431%e               | 7.5353%e                        | 100%e                         | 0%e                    | 0%e                                |
| Aland Is.                                     | 81.934%e                   | 13.473%e               | 4.5926%e                        | 100%e                         | 0%e                    | 0%e                                |
| Jersey                                        | 84.877%e                   | 11.69%e                | 3.4336%e                        | 100%e                         | 0%e                    | 0%e                                |
| Isle of Man                                   | 78.893%e                   | 16.831%e               | 4.2763%e                        | 100%e                         | 0%e                    | 0%e                                |
| Guernsey                                      | 85.311%e                   | 11.638%e               | 3.0505%e                        | 100%e                         | 0%e                    | 0%e                                |
| Faroe Is.                                     | 80.153%e                   | 14.205%e               | 5.6421%e                        | 100%e                         | 0%e                    | 0%e                                |
| Gibraltar                                     | 100%e                      | 0%                     | 0.000008607%e                   | 100%e                         | 0%                     | 0.000008607%e                      |
| Svalbard & Jan<br>Mayen                       | 89.43%e                    | 8.0668%e               | 2.503%e                         | 89.43%e                       | 8.0668%e               | 2.503%e                            |
| Falkland Is.                                  | 100%e                      | 0%                     | 0.0000045016%e                  | 100%e                         | 0%                     | 0.0000045016%e                     |
| Cocos Is.                                     | 3.5705%e                   | 94.113%e               | 2.3169%e                        | 23.704%e                      | 60.914%e               | 15.382%e                           |
| St Pierre & Miquelon                          | 13.735%e                   | 84.488%e               | 1.7764%e                        | 84.483%e                      | 4.5898%e               | 10.927%e                           |
| South Georgia &<br>South Sandwich Is.         | 0%e                        | 100%e                  | 0%e                             | 0%e                           | 100%e                  | 0%e                                |
| Kosovo                                        | 2.2428%e                   | 95.963%e               | 1.7945%e                        | 19.72%e                       | 64.502%e               | 15.778%e                           |
| Channel Is.                                   | 73.222%e                   | 26.778%e               | 0%e                             | 100%e                         | 0%e                    | 0%e                                |

|                          | Primary<br>Treatment | Secondary<br>Treatment | Tertiary<br>Treatment | WWT with<br>anaerobic | Share of<br>CHP in AD | Sewage<br>sludge in | Sewage<br>sludge in | Sewage<br>sludge in |
|--------------------------|----------------------|------------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|
|                          |                      |                        |                       | digestion             |                       | agriculture         | landfill            | incineration        |
| Poland                   | 0%                   | 18 87%                 | 81 13%                | (AD)<br>43%           | 43%                   | 39 829%             | 40 24%              | 19 931%             |
| Bomania                  | 13.91%               | 31.96%                 | 54 13%                | 0.1%                  | 41 7%                 | 11 316%             | 87 822%             | 0.86112%            |
| Czech Rep.               | 0.76%e               | 22.22%e                | 77.02%e               | 70%                   | 95.7%                 | 88.532%             | 5.7299%             | 5.7381%             |
| Hungary                  | 0.13%                | 15.86%                 | 84.01%                | 47%                   | 80.9%                 | 75.021%             | 24.602%             | 0.37723%            |
| Serbia                   | 10.22%               | 71.11%                 | 18.67%                | 0%                    | 0%e                   |                     |                     |                     |
| Bulgaria                 | 2.68%                | 27.06%                 | 70.26%                | 100%                  | 100%                  | 58.542%             | 41.458%             | 0%                  |
| Slovakia                 | 3%                   | 93%                    | 4%                    | 86%                   | 84.9%                 | 86.31%              | 13.648%             | 0.041937%           |
| Croatia                  | 30.25%               | 67.86%                 | 1.89%                 | 60%                   | 71.7%                 | 33.159%             | 66.841%             | 0%                  |
| Bosnia<br>Herzegovina    | 14.88%e              | 69.07%e                | 16.05%e               | 100%                  | 0%                    |                     |                     |                     |
| Lithuania                | 0.14%                | 8.61%                  | 91.25%                | 61%                   | 55.7%                 | 61.781%             | 36.762%             | 1.4569%             |
| Albania                  | 30%                  | 60%                    | 10%                   | 5%e                   | 0%e                   |                     |                     |                     |
| Latvia                   | 5.22%                | 70.52%                 | 24.26%                | 46%                   | 67.4%                 | 96.529%             | 3.471%              | 0%                  |
| North Macedonia          | 14.21%e              | 68.74%e                | 17.05%e               | 0%                    | 0%e                   | 0 70 / 00 /         |                     | 44.0070/            |
| Slovenia                 | 0%                   | 52.95%                 | 47.05%                | 32%                   | 100%                  | 3.7019%             | 54.991%             | 41.307%             |
| Estonia                  | 0%                   | 6.02%                  | 93.98%                | 0%                    | 70%e                  | 89.18%              | 10.82%              | 0%                  |
| Russia                   | 7.07%e               | 57.97%e                | 34.90%e               | 0%                    | 70%e                  |                     |                     |                     |
| Likraino                 | 4.79%0               | 49.42%0                | 6.03%                 | 9%                    | 100%                  |                     |                     |                     |
| Uzbekistan               | 46.92%e              | 51.81%e                | 1.27%e                | 1.5%e                 | 0%e                   |                     |                     |                     |
| Kazakhstan               | 7.02%e               | 57.82%e                | 35 16%e               | 8.7%e                 | 70%e                  |                     |                     |                     |
| Belarus                  | 12.63%               | 63.45%                 | 23.92%                | 5.9%e                 | 0%e                   |                     |                     |                     |
| Azerbaijan               | 20.04%e              | 69.66%e                | 10.29%e               | 4.3%e                 | 0%e                   |                     |                     |                     |
| Tajikistan               | 59.18%e              | 40.37%e                | 0.45%e                | 0.9%e                 | 0%e                   |                     |                     |                     |
| Kyrgyzstan               | 51.66%e              | 47.47%e                | 0.86%e                | 1.2%e                 | 0%e                   |                     |                     |                     |
| Turkmenistan             | 10.98%e              | 65.86%e                | 23.16%e               | 6.7%e                 | 0%e                   |                     |                     |                     |
| Georgia                  | 19.76%e              | 69.7%e                 | 10.53%e               | 4.4%e                 | 0%e                   |                     |                     |                     |
| Moldova                  | 28.39%e              | 66.31%e                | 5.3%e                 | 3.1%e                 | 0%e                   |                     |                     |                     |
| Armenia                  | 19.56%e              | 69.73%e                | 10.71%e               | 4.4%e                 | 0%e                   |                     |                     |                     |
| China                    | 5.53%e               | 52.64%e                | 41.83%e               | 0%                    | 70%e                  |                     |                     |                     |
| Japan                    | 0.06%e               | 19.94%e                | 80%e                  | 0%                    | 70%e                  |                     |                     |                     |
| South Korea              | 0.16%e               | 19.9%e                 | 79.95%e               | 24%                   | 41.7%                 |                     |                     |                     |
| North Korea              | 70.56%e              | 29.3%e                 | 0.14%e                | 0.5%e                 | 0%e                   |                     |                     |                     |
| Taiwan                   | 0.86%e               | 22.88%e                | 76.27%e               | 0%                    | 70%e                  |                     |                     |                     |
| Hong Kong                | 0.01%e               | 19.99%e                | 80%e                  | 39.8%e                | 70%e                  |                     |                     |                     |
| Mongolia                 | 23.53%e              | 68.71%e                | 7.76%e                | 3.7%e                 | 0%e                   |                     |                     |                     |
| Brazil                   | 33 21%               | 20%8                   | 10 66%                | 11%                   | 70%8                  |                     |                     |                     |
| Mexico                   | 6.98%e               | 57.69%e                | 35.33%e               | 15%                   | 100%                  |                     |                     |                     |
| Colombia                 | 12.69%e              | 67.68%e                | 19.64%e               | 58%                   | 72.4%                 |                     |                     |                     |
| Argentina                | 4.69%e               | 48.92%e                | 46.39%e               | 0%                    | 70%e                  |                     |                     |                     |
| Peru                     | 12.04%e              | 67.07%e                | 20.89%e               | 2%                    | 0%                    |                     |                     |                     |
| Venezuela                | 4.14%e               | 46.14%e                | 49.72%e               | 11.1%e                | 70%e                  |                     |                     |                     |
| Chile                    | 26.4%                | 4.58%                  | 69.02%                | 10%                   | 0%                    |                     |                     |                     |
| Ecuador                  | 13.41%e              | 68.24%e                | 18.35%e               | 5.9%e                 | 0%e                   |                     |                     |                     |
| Guatemala                | 20%e                 | 69.67%e                | 10.33%e               | 4.3%e                 | 0%e                   |                     |                     |                     |
| Cuba                     | 9.86%e               | 64.22%e                | 25.92%e               | 7.2%e                 | 70%e                  |                     |                     |                     |
| Bolivia                  | 25.16%e              | 68.02%e                | 6.82%e                | 3.5%e                 | 0%e                   |                     |                     |                     |
| Dominican Rep.           | 9.29%e               | 63.23%e                | 27.48%e               | 7.5%e                 | 70%e                  |                     |                     |                     |
| Haiti                    | 62.25%e              | 37.41%e                | 0.34%e                | 0.8%e                 | 0%e                   |                     |                     |                     |
| Honduras                 | 32.33%e              | 63.75%e                | 3.92%e                | 2.6%e                 | 0%e                   |                     |                     |                     |
| Paraguay                 | 21.48%e              | 69.37%e                | 9.15%e                | 4.1%e                 | 0%e                   |                     |                     |                     |
| El Salvador<br>Nicoroguo | 19.28%e              | 69.75%e                | 10.96%e               | 4.5%e                 | 0%e                   |                     |                     |                     |
| Nicaragua<br>Costa Rica  | 40.07%               | 16 44% o               | 2.07%0                | 1.9%                  | 70%0                  |                     |                     |                     |
| Puerto Bico              | 4.2 % <del>0</del>   | 40.44 %e               | 12 /%                 | 19.7%                 | 70%e                  |                     |                     |                     |
| Panama                   | 2.36%e               | 34.7%e                 | 62.93%e               | 13.8%e                | 70%e                  |                     |                     |                     |
| Uruguay                  | 1.76%e               | 29.97%e                | 68.27%e               | 15.3%e                | 70%e                  |                     |                     |                     |
| Jamaica                  | 14.97%e              | 69.11%e                | 15.92%e               | 5.5%e                 | 0%e                   |                     |                     |                     |
| Trinidad & Tobago        | 1.82%e               | 30.46%e                | 67.72%e               | 15.1%e                | 70%e                  |                     |                     |                     |
| Guyana                   | 18.5%e               | 69.79%e                | 11.72%e               | 4.6%e                 | 0%e                   |                     |                     |                     |
| Suriname                 | 15.13%e              | 69.18%e                | 15.7%e                | 5.4%e                 | 0%e                   |                     |                     |                     |
| Cabo Verde               | 24.3%e               | 68.4%e                 | 7.29%e                | 3.6%e                 | 0%e                   |                     |                     |                     |
| Guadeloupe               | 0.42%e               | 20.43%e                | 79.15%e               | 22.5%e                | 70%e                  |                     |                     |                     |
| Belize                   | 18.98%e              | 69.77%e                | 11.25%e               | 4.5%e                 | 0%e                   |                     |                     |                     |
| Bahamas                  | 0.45%e               | 20.54%e                | 79.01%e               | 22.2%e                | 70%e                  |                     |                     |                     |
| French Guiana            | 1.93%e               | 31.4%e                 | 66.67%e               | 14.8%e                | 70%e                  |                     |                     |                     |

## Tab. 27.3 Country data for wastewater treatment parameters and the sewage sludge disposal mix. A suffix 'e' denotes extrapolated data. An empty cell denotes not available data.

|                          | Primary<br>Treatment | Secondary<br>Treatment | Tertiary<br>Treatment | WWT with<br>anaerobic<br>digestion<br>(AD) | Share of<br>CHP in AD | Sewage<br>sludge in<br>agriculture | Sewage<br>sludge in<br>landfill | Sewage<br>sludge in<br>incineration |
|--------------------------|----------------------|------------------------|-----------------------|--------------------------------------------|-----------------------|------------------------------------|---------------------------------|-------------------------------------|
| Curacao                  | 0.94%e               | 23.47%e                | 75.59%e               | 18.4%e                                     | 70%e                  |                                    |                                 |                                     |
| Grenada                  | 5.5%e                | 52.53%e                | 41.97%e               | 9.8%e                                      | 70%e                  |                                    |                                 |                                     |
| Palestine                | 24.31%e              | 68.4%e                 | 7.29%e                | 3.6%e                                      | 0%e                   |                                    |                                 |                                     |
| Egypt                    | 22.01%               | 74.73%                 | 3.27%                 | 15%                                        | 0%                    |                                    |                                 |                                     |
| Turkey                   | 32.61%               | 38.69%                 | 28.71%                | 37%                                        | 94.6%                 |                                    |                                 |                                     |
| Iran                     | 16.03%e              | 69.48%e                | 14.48%e               | 6%                                         | 100%                  |                                    |                                 |                                     |
| Algeria                  | 22.3%e               | 69.14%e                | 8.56%e                | 3.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Morocco                  | 54.6%                | 26.13%                 | 19.27%                | 3.2%e                                      | 0%e                   |                                    |                                 |                                     |
| Iraq                     | 15.57%e              | 69.34%e                | 15.09%e               | 5.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Saudi Arabia             | 0.65%e               | 21.54%e                | 77.81%e               | 0%                                         | 70%e                  |                                    |                                 |                                     |
| Yemen                    | 68.04%               | 20.9%                  | 11.06%                | 0.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Syria                    | 41.7%e               | 56.39%e                | 1.91%e                | 1.8%e                                      | 0%e                   |                                    |                                 |                                     |
| Tunisia                  | 0%                   | 93.47%                 | 6.53%                 | 3.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Israel                   | 5.04%                | 38.93%                 | 56.03%                | 5%                                         | 100%                  |                                    |                                 |                                     |
| Jordan                   | 0%                   | 100%                   | 0%                    | 5%e                                        | 0%e                   |                                    |                                 |                                     |
| Libya                    | 0%                   | 100%                   | 0%                    | 7.4%e                                      | 70%e                  |                                    |                                 |                                     |
| Emirates                 | 0.03%e               | 19.97%e                | 80%e                  | 35.6%e                                     | 70%e                  |                                    |                                 |                                     |
| Lebanon                  | 8.84%e               | 62.34%e                | 28.82%e               | 7.7%e                                      | 70%e                  |                                    |                                 |                                     |
| Oman                     | 2.93%e               | 38.79%e                | 58.27%e               | 12.8%e                                     | 70%e                  |                                    |                                 |                                     |
| Kuwait                   | 0%                   | 20%                    | 80%                   | 28%e                                       | 70%e                  |                                    |                                 |                                     |
| Qatar                    | 0%e                  | 20%e                   | 80%e                  | 50%e                                       | 70%e                  |                                    |                                 |                                     |
| Bahrain                  | 0%                   | 0%                     | 100%                  | 17.8%e                                     | 70%e                  |                                    |                                 |                                     |
| United States            | 0%e                  | 20%e                   | 80%e                  | 60%                                        | 45%                   |                                    |                                 |                                     |
| Canada                   | 19.05%               | 63.1%                  | 17.86%                | 29%                                        | 24.1%                 |                                    |                                 |                                     |
| Australia                | 0.01%e               | 19.99%e                | 80%e                  | 38%                                        | 55.3%                 |                                    |                                 |                                     |
| New Zealand              | 6.3%                 | 15.9%                  | 77.8%                 | 20%                                        | 100%                  |                                    |                                 |                                     |
| Fiji<br>Franch Dalumasia | 14.97%e              | 69.11%e                | 15.91%e               | 5.5%e                                      | 0%e                   |                                    |                                 |                                     |
| Prench Polynesia         | 1.94%e               | 31.42%e                | 50.04%e               | 14.8%e                                     | 70%e                  |                                    |                                 |                                     |
| New Caledonia            | 2.74%e               | 37.47%e                | 59.79%e               | 13.1%e                                     | 70%e                  |                                    |                                 |                                     |
| Samaa                    | 27.0%e               | 60.70%e                | 5.63%e                | 3.2%e                                      | 0%e                   |                                    |                                 |                                     |
| Mioropogia ESM           | 20.20%e              | 67.70%                 | 6.40%                 | 4.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Nauru                    | 25.79%8              | 36 75% 0               | 0.49%e                | 13 3% 0                                    | 70%0                  |                                    |                                 |                                     |
| Antarctica               | 2.04 %e              | 0%e                    | 0%e                   | 13.3 %e                                    | 70%e                  |                                    |                                 |                                     |
| India                    | 38.34%e              | 59 18%e                | 2 48%e                | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Pakistan                 | 45.57%e              | 53.01%e                | 1 41%e                | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Bangladesh               | 41.29%e              | 56.74%e                | 1.98%e                | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Afghanistan              | 68.07%e              | 31.74%e                | 0.18%e                | 0.6%e                                      | 0%e                   |                                    |                                 |                                     |
| Nepal                    | 55.86%e              | 43.53%e                | 0.6%e                 | 1%e                                        | 0%e                   |                                    |                                 |                                     |
| Sri Lanka                | 22.27%e              | 69.15%e                | 8.58%e                | 3.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Bhutan                   | 29.14%e              | 65.85%e                | 5%e                   | 3%e                                        | 0%e                   |                                    |                                 |                                     |
| Maldives                 | 7.85%e               | 60.11%e                | 32.04%e               | 8.2%e                                      | 70%e                  |                                    |                                 |                                     |
| Indonesia                | 22.07%e              | 69.21%e                | 8.72%e                | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Philippines              | 22.17%e              | 69.18%e                | 8.65%e                | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Viet Nam                 | 32.98%e              | 63.29%e                | 3.73%e                | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Thailand                 | 10.18%e              | 64.74%e                | 25.08%e               | 0%                                         | 70%e                  |                                    |                                 |                                     |
| Myanmar                  | 48.01%e              | 50.82%e                | 1.16%e                | 1.4%e                                      | 0%e                   |                                    |                                 |                                     |
| Malaysia                 | 4.6%e                | 48.51%e                | 46.88%e               | 0%                                         | 70%e                  |                                    |                                 |                                     |
| Cambodia                 | 46.63%e              | 52.07%e                | 1.3%e                 | 1.5%e                                      | 0%e                   |                                    |                                 |                                     |
| Laos                     | 35.72%e              | 61.25%e                | 3.03%e                | 2.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Papua New Guinea         | 37.33%e              | 59.99%e                | 2.68%e                | 2.2%e                                      | 0%e                   |                                    |                                 |                                     |
| Singapore                | 0.01%e               | 19.99%e                | 80%e                  | 44.4%e                                     | 70%e                  |                                    |                                 |                                     |
| Timor-Leste              | 38.65%e              | 58.93%e                | 2.42%e                | 2.1%e                                      | 0%e                   |                                    |                                 |                                     |
| Brunei                   | 0.28%e               | 20.01%e                | /9./2%e               | 24.7%e                                     | 70%e                  |                                    |                                 |                                     |
|                          | 39.33%e              | 58.37%e                | 2.3%e                 | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Ethiopia                 | 60.31%e              | 39.28%e                | 0.4%e                 | 0%                                         | 0%e                   |                                    |                                 |                                     |
| Congo (Kinshasa)         | 71.25%e              | 28.02%e                | 0.13%e                | 0.5%e                                      | 0%e                   |                                    |                                 |                                     |
| South Airica             | 13.5%e               | 08.3%e                 | 18.21%e               | 57%                                        | 0%                    |                                    |                                 |                                     |
| Konya                    | 42.21%               | 43.20 %8               | 1 84%                 | 1.8%                                       | 0%0                   |                                    |                                 |                                     |
| Sudan                    | 65 92%0              | 33 85%-0               | 0.23%0                | 0.6%-0                                     | 0%0                   |                                    |                                 |                                     |
| Uganda                   | 66.46%e              | 33.32%e                | 0.22%e                | 0.6%e                                      | 0%e                   |                                    |                                 |                                     |
| Ghana                    | 40,28%e              | 57,59%e                | 2,14%e                | 1.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Mozambique               | 72.84%e              | 27.05%e                | 0.11%e                | 0.4%e                                      | 0%e                   |                                    |                                 |                                     |
| Madagascar               | 72.48%e              | 27.41%e                | 0.11%e                | 0.4%e                                      | 0%e                   |                                    |                                 |                                     |
| Cote d'Ivoire            | 36.07%e              | 60.99%e                | 2.95%e                | 2.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Cameroon                 | 49.6%e               | 49.37%e                | 1.02%e                | 1.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Angola                   | 30.49%e              | 65%e                   | 4.51%e                | 2.8%e                                      | 0%e                   |                                    |                                 |                                     |
| Burkina Faso             | 64.2%e               | 35.52%e                | 0.28%e                | 0.7%e                                      | 0%e                   |                                    |                                 |                                     |
| Niger                    | 73.33%e              | 26.57%e                | 0.1%e                 | 0.4%e                                      | 0%e                   |                                    |                                 |                                     |
| Malawi                   | 75.35%e              | 24.57%e                | 0.08%e                | 0.4%e                                      | 0%e                   |                                    |                                 |                                     |

|                     | Primary<br>Treatment | Secondary<br>Treatment | Tertiary<br>Treatment | WWT with<br>anaerobic<br>digestion<br>(AD) | Share of<br>CHP in AD | Sewage<br>sludge in<br>agriculture | Sewage<br>sludge in<br>landfill | Sewage<br>sludge in<br>incineration |
|---------------------|----------------------|------------------------|-----------------------|--------------------------------------------|-----------------------|------------------------------------|---------------------------------|-------------------------------------|
| Mali                | 59.15%e              | 40.4%e                 | 0.45%e                | 0.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Zambia              | 48.95%e              | 49.98%e                | 1.08%e                | 1.4%e                                      | 0%e                   |                                    |                                 |                                     |
| Senegal             | 54.34%e              | 44.97%e                | 0.69%e                | 1.1%e                                      | 0%e                   |                                    |                                 |                                     |
| Zimbabwe            | 50%                  | 50%                    | 0%                    | 0.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Bwanda              | 62.31%e              | 37.36%e                | 0.33%e                | 0.8%e                                      | 0%e                   |                                    |                                 |                                     |
| Chad                | 64.32%e              | 35.41%e                | 0.27%e                | 0.7%e                                      | 0%e                   |                                    |                                 |                                     |
| Guinea              | 67.82%e              | 31.99%e                | 0.19%e                | 0.6%e                                      | 0%e                   |                                    |                                 |                                     |
| South Sudan         | 61.86%e              | 37 79%e                | 0.35%e                | 0.8%e                                      | 0%e                   |                                    |                                 |                                     |
| Burundi             | 79.49%0              | 20.46%                 | 0.03%6                | 0.3%0                                      | 0%0                   |                                    |                                 |                                     |
| Somalia             | 86.06%e              | 13 93%                 | 0.01%e                | 0.1%e                                      | 0%0                   |                                    |                                 |                                     |
| Bonin               | 50.00 %e             | 10.93%                 | 0.01%e                | 0.1%                                       | 0%0                   |                                    |                                 |                                     |
| Terra               | 59.55%e              | 40.02%e                | 0.43%e                | 0.9%e                                      | 0%e                   |                                    |                                 |                                     |
| Fritroo             | 71.05%               | 31.05%e                | 0.13%                 | 0.0%e                                      | 0%e                   |                                    |                                 |                                     |
| Siorra Loopo        | 67.41%0              | 20.02 /80              | 0.13%e                | 0.5%e                                      | 0%0                   |                                    |                                 |                                     |
| Cont Afr. Bon       | 72 44%               | 32.39%                 | 0.2 %                 | 0.0%                                       | 0%0                   |                                    |                                 |                                     |
| Cente (Brezzewille) | 73.44%e              | 20.40%e                | 0.1%e                 | 0.4%e                                      | 0%e                   |                                    |                                 |                                     |
| Congo (Brazzaville) | 52.2%e               | 40.97%e                | 0.83%e                | 1.2%e                                      | 0%e                   |                                    |                                 |                                     |
| Libena              | 76.42%e              | 23.52%e                | 0.07%e                | 0.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Mauritarila         | 51.11%e              | 47.99%e                | 0.9%e                 | 1.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Namibia             | 17.66%e              | 69.76%e                | 12.58%e               | 4.8%e                                      | 0%e                   |                                    |                                 |                                     |
| Botswana            | 10.15%e              | 64.69%e                | 25.16%e               | 7.1%e                                      | 70%e                  |                                    |                                 |                                     |
| Lesotho             | 51.26%e              | 47.85%e                | 0.89%e                | 1.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Gambia              | 70.08%e              | 29.77%e                | 0.15%e                | 0.5%e                                      | 0%e                   |                                    |                                 |                                     |
| Guinea-Bissau       | 62.6%e               | 37.07%e                | 0.32%e                | 0.8%e                                      | 0%e                   |                                    |                                 |                                     |
| Gabon               | 8.92%e               | 62.5%e                 | 28.58%e               | 7.6%e                                      | 70%e                  |                                    |                                 |                                     |
| Eswatini            | 28.73%e              | 66.1%e                 | 5.16%e                | 3%e                                        | 0%e                   |                                    |                                 |                                     |
| Mauritius           | 33.7%                | 2.59%                  | 63.71%                | 11.1%e                                     | 70%e                  |                                    |                                 |                                     |
| Djibouti            | 27%e                 | 67.1%e                 | 5.91%e                | 3.3%e                                      | 0%e                   |                                    |                                 |                                     |
| Comoros             | 63.15%e              | 36.55%e                | 0.31%e                | 0.7%e                                      | 0%e                   |                                    |                                 |                                     |
| Equatorial Guinea   | 16.51%e              | 69.6%e                 | 13.89%e               | 5.1%e                                      | 0%e                   |                                    |                                 |                                     |
| Western Sahara      | 34.1%e               | 62.48%e                | 3.42%e                | 2.5%e                                      | 0%e                   |                                    |                                 |                                     |
| Mayotte             | 3.41%e               | 41.91%e                | 54.68%e               | 12%e                                       | 70%e                  |                                    |                                 |                                     |
| Sao Tome &          | 38.86%e              | 58.76%e                | 2.38%e                | 2.1%e                                      | 0%e                   |                                    |                                 |                                     |
| Principe            |                      |                        |                       |                                            |                       |                                    |                                 |                                     |
| Germany             | 0%                   | 2.62%                  | 97.38%                | 53%                                        | 67.9%                 | 35.191%                            | 0.3549%                         | 64.454%                             |
| France              | 0.12%                | 17.76%                 | 82.11%                | 17%                                        | 82.4%                 | 78.202%                            | 4.8245%                         | 16.973%                             |
| United Kingdom      | 0%                   | 43%                    | 57%                   | 95%                                        | 91.6%                 | 82.404%                            | 0.065866%                       | 17.53%                              |
| Italy               | 2.46%                | 29.73%                 | 67.81%                | 23%                                        | 39.1%                 | 53.41%                             | 40.68%                          | 5.9102%                             |
| Spain               | 1.8%                 | 25.26%                 | 72.94%                | 25%                                        | 100%                  | 83.587%                            | 8.8916%                         | 7.5217%                             |
| Netherlands         | 0.6%                 | 1%                     | 98.4%                 | 43%                                        | 48.8%                 | 0.51783%                           | 3.48%                           | 96.002%                             |
| Portugal            | 3.78%                | 41.34%                 | 54.88%                | 4%                                         | 100%                  | 97.05%                             | 2.9496%                         | 0%                                  |
| Greece              | 0.99%e               | 23.88%e                | 75.12%e               | 55%                                        | 100%                  | 20.689%                            | 45.531%                         | 33.78%                              |
| Belgium             | 0.02%e               | 19.98%e                | 80%e                  | 60%                                        | 83.3%                 | 44.007%                            | 2.326%                          | 53.667%                             |
| Sweden              | 13%                  | 4%                     | 83%                   | 96%                                        | 3.1%                  | 97.07%                             | 1.447%                          | 1.4829%                             |
| Austria             | 0.01%e               | 19.99%e                | 80%e                  | 22%                                        | 68.2%                 | 39.497%                            | 8.2291%                         | 52.273%                             |
| Switzerland         | 0%                   | 11.22%                 | 88.78%                | 89%                                        | 23.6%                 | 10%                                | 0%                              | 90%                                 |
| Denmark             | 0%                   | 2.2%                   | 97.8%                 | 50%                                        | 50%                   | 76.878%                            | 0.89973%                        | 22.222%                             |
| Finland             | 0.02%e               | 19.98%e                | 80%e                  | 43%                                        | 23.3%                 | 99.294%                            | 0.40005%                        | 0.30592%                            |
| Ireland             | 1.03%                | 71.13%                 | 27.84%                | 18%                                        | 100%                  | 99.664%                            | 0.33619%                        | 0%                                  |
| Norway              | 35.75%               | 5.4%                   | 58.85%                | 63%                                        | 9.5%                  | 91.366%                            | 5.9151%                         | 2.7189%                             |
| Cyprus              | 0%                   | 38.59%                 | 61.41%                | 0%                                         | 70%e                  | 95.965%                            | 0%                              | 4.0355%                             |
| Luxembourg          | 1.93%                | 25.69%                 | 72.39%                | 83%                                        | 57.8%                 | 81.97%                             | 0%                              | 18.03%                              |
| Malta               | 0.44%e               | 20.49%e                | 79.08%e               | 55%                                        | 54.5%                 | 0%                                 | 100%                            | 0%                                  |
| Iceland             | 98.48%               | 0%                     | 1.52%                 | 0%                                         | 70%e                  | 15.883%                            | 82.41%                          | 1.7078%                             |
| Andorra             | 0.04%e               | 19.96%e                | 80%e                  | 35.1%e                                     | 70%e                  |                                    |                                 |                                     |
| Greenland           | 0%                   | 2.2%                   | 97.8%                 | 17.5%e                                     | 70%e                  |                                    |                                 |                                     |
| Liechtenstein       | 0%e                  | 20%e                   | 80%e                  | 68.5%e                                     | 70%e                  |                                    |                                 |                                     |
| San Marino          | 0.01%e               | 19.99%e                | 80%e                  | 40.6%e                                     | 70%e                  |                                    |                                 |                                     |
| Monaco              | 0%e                  | 20%e                   | 80%e                  | 84.5%e                                     | 70%e                  |                                    |                                 |                                     |
| Vatican             | 0%e                  | 20%e                   | 80%e                  | 74.6%e                                     | 70%e                  |                                    |                                 |                                     |
| Bonaire, Sint       | 0.62%e               | 21.35%e                | 78.03%e               | 20.5%e                                     | 70%e                  |                                    |                                 |                                     |
| Eustatius & Saba    |                      |                        |                       |                                            |                       |                                    |                                 |                                     |
| Martinique          | 0.25%e               | 19.97%e                | 79.79%e               | 25.2%e                                     | 70%e                  |                                    |                                 |                                     |
| Barbados            | 1.75%e               | 29.89%e                | 68.36%e               | 15.3%e                                     | 70%e                  |                                    |                                 |                                     |
| St Lucia            | 7.18%e               | 58.3%e                 | 34.52%e               | 8.6%e                                      | 70%e                  |                                    |                                 |                                     |
| Aruba               | 0.35%e               | 20.18%e                | 79.48%e               | 23.5%e                                     | 70%e                  |                                    |                                 |                                     |
| Virgin Is. (US)     | 2.92%e               | 38.74%e                | 58.33%e               | 12.8%e                                     | 70%e                  |                                    |                                 |                                     |
| St Vincent &        | 9.79%e               | 64.11%e                | 26.09%e               | 7.2%e                                      | 70%e                  |                                    |                                 |                                     |
| Grenadines          |                      |                        | aa c=-:               |                                            | 700                   |                                    |                                 |                                     |
| Antigua & Barbuda   | 1.57%e               | 28.46%e                | 69.97%e               | 15.8%e                                     | 70%e                  |                                    |                                 |                                     |
| Dominica            | 9.11%e               | 62.89%e                | 28%e                  | 7.5%e                                      | 70%e                  |                                    |                                 |                                     |
| Bermuda             | 0%e                  | 20%e                   | 80%e                  | 71%e                                       | 70%e                  |                                    |                                 |                                     |

|                                               | Primary<br>Treatment | Secondary<br>Treatment | Tertiary<br>Treatment | WWT with<br>anaerobic<br>digestion<br>(AD) | Share of<br>CHP in AD | Sewage<br>sludge in<br>agriculture | Sewage<br>sludge in<br>landfill | Sewage<br>sludge in<br>incineration |
|-----------------------------------------------|----------------------|------------------------|-----------------------|--------------------------------------------|-----------------------|------------------------------------|---------------------------------|-------------------------------------|
| Cayman Is.                                    | 0.02%e               | 19.98%e                | 80%e                  | 37.7%e                                     | 70%e                  |                                    |                                 |                                     |
| St Kitts & Nevis                              | 1.66%e               | 29.17%e                | 69.18%e               | 15.6%e                                     | 70%e                  |                                    |                                 |                                     |
| Turks & Caicos                                | 0.28%e               | 20.01%e                | 79.71%e               | 24.7%e                                     | 70%e                  |                                    |                                 |                                     |
| Sint Maarten (NL)                             | 0.31%e               | 20.07%e                | 79.63%e               | 24.2%e                                     | 70%e                  |                                    |                                 |                                     |
| Virgin Is. (Brit)                             | 0.04%e               | 19.96%e                | 80%e                  | 35.2%e                                     | 70%e                  |                                    |                                 |                                     |
| St Martin (Fr)                                | 2 15%e               | 33.06%e                | 64 79%e               | 14.3%e                                     | 70%e                  |                                    |                                 |                                     |
| Anguilla                                      | 0.23%e               | 19.95%e                | 79.82%e               | 25.5%e                                     | 70%e                  |                                    |                                 |                                     |
| St Barthelemy                                 | 7 15%e               | 58 22%e                | 34.62%e               | 8.6%e                                      | 70%e                  |                                    |                                 |                                     |
| Montserrat                                    | 3.7%e                | 43.65%e                | 52.66%e               | 11.6%e                                     | 70%e                  |                                    |                                 |                                     |
| US Minor Outlying                             | 0.02%e               | 19.98%e                | 80%e                  | 37 1%e                                     | 70%e                  |                                    |                                 |                                     |
| ls.                                           | 0.02,00              | 10100,000              | 00,00                 | 0111/00                                    | 10,00                 |                                    |                                 |                                     |
| Solomon Is.                                   | 39.71%e              | 58.06%e                | 2.23%e                | 2%e                                        | 0%e                   |                                    |                                 |                                     |
| Guam                                          | 0.2%e                | 19.92%e                | 79.88%e               | 26.3%e                                     | 70%e                  |                                    |                                 |                                     |
| Tonga                                         | 18.59%e              | 69.79%e                | 11.62%e               | 4.6%e                                      | 0%e                   |                                    |                                 |                                     |
| Kiribati                                      | 27.65%e              | 66.74%e                | 5.61%e                | 3.2%e                                      | 0%e                   |                                    |                                 |                                     |
| Marshall Is.                                  | 16.21%e              | 69.53%e                | 14.26%e               | 5.2%e                                      | 0%e                   |                                    |                                 |                                     |
| American Samoa                                | 3.3%e                | 41.21%e                | 55.49%e               | 12.2%e                                     | 70%e                  |                                    |                                 |                                     |
| Northern Mariana                              | 3.12%e               | 40.07%e                | 56.81%e               | 12.5%e                                     | 70%e                  |                                    |                                 |                                     |
| ls.                                           |                      |                        |                       |                                            |                       |                                    |                                 |                                     |
| Palau                                         | 3.62%e               | 43.17%e                | 53.21%e               | 11.8%e                                     | 70%e                  |                                    |                                 |                                     |
| Wallis & Futuna                               | 3.52%e               | 42.62%e                | 53.86%e               | 11.9%e                                     | 70%e                  |                                    |                                 |                                     |
| Tuvalu                                        | 11.23%e              | 66.18%e                | 22.59%e               | 6.7%e                                      | 0%e                   |                                    |                                 |                                     |
| Cook Is.                                      | 0.88%e               | 23.08%e                | 76.04%e               | 18.7%e                                     | 70%e                  |                                    |                                 |                                     |
| Norfolk Is.                                   | 0.1%e                | 19.91%e                | 79.99%e               | 30.1%e                                     | 70%e                  |                                    |                                 |                                     |
| Tokelau                                       | 12.89%e              | 67.84%e                | 19.27%e               | 6.1%e                                      | 0%e                   |                                    |                                 |                                     |
| Niue                                          | 14.38%e              | 68.83%e                | 16.78%e               | 5.6%e                                      | 0%e                   |                                    |                                 |                                     |
| Pitcairn Is.                                  | 28.43%e              | 66.29%e                | 5.29%e                | 3.1%e                                      | 0%e                   |                                    |                                 |                                     |
| Bouvet Is.                                    | 100%e                | 0%e                    | 0%e                   | 0%e                                        | 0%e                   |                                    |                                 |                                     |
| Heard & McDonald                              | 100%e                | 0%e                    | 0%e                   | 0%e                                        | 0%e                   |                                    |                                 |                                     |
| ls.<br>British Indian<br>Ocean Territory      | 100%e                | 0%e                    | 0%e                   | 0%e                                        | 0%e                   |                                    |                                 |                                     |
| Christmas Is.                                 | 0.02%e               | 19.98%e                | 80%e                  | 37.1%e                                     | 70%e                  |                                    |                                 |                                     |
| French Southern<br>Territories                | 100%e                | 0%e                    | 0%e                   | 0%e                                        | 0%e                   |                                    |                                 |                                     |
| Reunion                                       | 0.37%e               | 20.24%e                | 79.38%e               | 23.2%e                                     | 70%e                  |                                    |                                 |                                     |
| Seychelles                                    | 1.41%e               | 27.13%e                | 71.47%e               | 16.4%e                                     | 70%e                  |                                    |                                 |                                     |
| St Helena,<br>Ascension &<br>Tristan da Cunha | 4.56%e               | 48.3%e                 | 47.14%e               | 10.7%e                                     | 70%e                  |                                    |                                 |                                     |
| Aland Is.                                     | 0.01%e               | 19.99%e                | 80%e                  | 42.8%e                                     | 70%e                  |                                    |                                 |                                     |
| Jersey                                        | 0%e                  | 20%e                   | 80%e                  | 46.2%e                                     | 70%e                  |                                    |                                 |                                     |
| Isle of Man                                   | 0%e                  | 20%e                   | 80%e                  | 54.9%e                                     | 70%e                  |                                    |                                 |                                     |
| Guernsey                                      | 0%e                  | 20%e                   | 80%e                  | 51.3%e                                     | 70%e                  |                                    |                                 |                                     |
| Faroe Is.                                     | 0.01%e               | 19.99%e                | 80%e                  | 40.2%e                                     | 70%e                  |                                    |                                 |                                     |
| Gibraltar                                     | 0%e                  | 20%e                   | 80%e                  | 60.5%e                                     | 70%e                  |                                    |                                 |                                     |
| Svalbard & Jan<br>Mayen                       | 0.01%e               | 19.99%e                | 80%e                  | 44.8%e                                     | 70%e                  |                                    |                                 |                                     |
| Falkland Is.                                  | 0%e                  | 20%e                   | 80%e                  | 62.1%e                                     | 70%e                  |                                    |                                 |                                     |
| Cocos Is.                                     | 9.54%e               | 63.68%e                | 26.79%e               | 7.3%e                                      | 70%e                  |                                    |                                 |                                     |
| St Pierre &<br>Miquelon                       | 0.18%e               | 19.9%e                 | 79.92%e               | 27.1%e                                     | 70%e                  |                                    |                                 |                                     |
| South Georgia &<br>South Sandwich Is.         | 100%e                | 0%e                    | 0%e                   | 0%e                                        | 0%e                   |                                    |                                 |                                     |
| Kosovo                                        | 19.07%e              | 69.77%e                | 11.17%e               | 4.5%e                                      | 0%e                   |                                    |                                 |                                     |
| Channel Is.                                   | 0%e                  | 20%e                   | 80%e                  | 48%e                                       | 70%e                  |                                    |                                 |                                     |

### 28 References

Web addresses indicate the source of electronic documents. The subsequent (date in brackets) refers to the date of retrieval.

Abegglen et al. 2009

Abegglen C, Escher B, Hollender J, Koepke S, Ort C, Peter A, Siegrist H, von Gunten U, Zimmermann S, Koch M, Niederhauser P, Schärer M, Braun C, Gälli R, Junghans M, Brocker S, Moser R, Rensch D (2009) Ozonung von gereinigtem Abwasser - Schlussbericht Pilotversuch Regensdorf. Eawag: Das Wasserforschungs-Institut des ETH-Bereichs. Comissioned by Bundesamts für Umwelt BAFU (FOEN) und

| -   | _ |
|-----|---|
| n   | 7 |
| · • |   |
| ~   |   |

|                      | des AWEL Amt für Abfall, Wasser, Energie und Luft, Kanton Zürich.<br>http://www.bafu.admin.ch/gewaesserschutz/03716/11218/11223/index.html (5 Jun 2012)<br>https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A14902 (7 Jun 2021)                                                                                                                                                                                                                                                                         |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arden et al. 2019    | Arden S, Ma X, Brown M (2019) Holistic analysis of urban water systems in the Greater Cincinnati region: (part 2) resource use profiles by emergy accounting approach. Water Research X, Vol. 2 (2019), 100012.<br>https://www.sciencedirect.com/sdfe/reader/pii/S2589914718300124/pdf (3 Mar 2021)                                                                                                                                                                                                             |
| Berg et al. 2021     | Berg M, Suess E, Cayo L, Bouchet S, Hug SJ, Kaegi R, Voegelin A, Winkel LHE, Buser AM (2021)<br>Quecksilber im Schweizer Abwasser – Konzentrationen, Massenflüsse, Speziierung und Rückhalt. Aqua &<br>Gas, Vol 101, No.1, p.14-20, 2021. https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A21907<br>and https://www.dora.lib4ri.ch/eawag/islandora/object/eawag%3A21907/datastream/PDF/Berg-2021-<br>Quecksilber_im_Schweizer_Abwasser_Konzentrationen%2C-%28published_version%29.pdf (16 Jan<br>2021) |
| BFE 2020             | Kaufmann U, Stamm N (2020) Schweizerische Statistik der erneuerbaren Energien - Ausgabe 2019.<br>eicher+pauli Liestal AG, commissioned by Bundesamt für Energie BFE (Swiss Department of Energy),<br>Berne. September 2020. https://pubdb.bfe.admin.ch/de/publication/download/10187 (13 Dec 2020)                                                                                                                                                                                                              |
| BFS 2005             | BFS (ed.) (2005) Materialflussrechnung für die Schweiz – Machbarkeitsstudie. Bundesamt für Statistik (BFS) Neuchatel, 2005. ISBN: 3-303-02089-2.<br>https://www.bfs.admin.ch/bfsstatic/dam/assets/342231/master (21 Jan 2021)                                                                                                                                                                                                                                                                                   |
| Binggeli et al. 2011 | Binggeli S, Diener H, Lindtner S (2011) Kosten und Leistungen der Abwasserentsorgung – Couts et prestations de l'assainissement. Fachorganisation Kommunale Infrastruktur (KI), Bern and Verband Schweizer Abwasser- und Gewässerschutzfachleute (VSA), Zürich, INFRAconcept, Bern, Switzerland. https://vsashop.ch/img/A~15_2506/3/Co%C3%BBts%20et%20prestations.pdf?xet=1544084608622 (22 Juli 2019)                                                                                                          |
| BL 2009              | Kanton Basel-Landschaft (2009) Anlagen Ergolztal. Bau- und Umweltschutzdirektion Kanton Basel-<br>Landschaft, Liestal, Switzerland. https://www.baselland.ch/politik-und-behorden/direktionen/bau-und-<br>umweltschutzdirektion/industrielle-betriebe/abwasseranlagen/anlagen-ergolztal (21 Sep 2017)                                                                                                                                                                                                           |
| Caduff et al. 2012   | Caduff M, Huijbregts MAJ, Althaus HJ, Koehler A, Hellweg S (2012) Wind Power Electricity: the bigger the turbine, the greener the electricity? Environmental Science & Technology, 2012, 46(9), 4725-4733.<br>https://pubs.acs.org/doi/pdf/10.1021/es204108n (6 Mar 2021)                                                                                                                                                                                                                                       |
| DIREV 2018           | (2018) Bilans 2017 de l'épuration vaudoise. Département du Territoire et de l'Environnement (DTE),<br>Direction générale de l'environnement (DGE), Direction de l'environnement industriel, urbain et rural<br>(DIREV). Présentés à Granges-Marnand et Suchy en avril 2018. <u>https://www.info-fes.ch/wp-</u><br>content/uploads/2018/09/FES-2017-Canton-de-Vaud-Rapport-cantonal-d-exploitation.pdf (22 Jan 2021)                                                                                             |
| Doka 2003-I          | Doka G (2003) Life Cycle Inventories of Waste Treatment Services, part I: General Introduction Waste Material Compositions Municipal Waste Collection. econvent report No. 13, part I. Swiss Centre for Life Cycle Inventories, Dübendorf, 2003. http://www.doka.ch/13 I WasteTreatmentGeneral.pdf (15 Dec 2003)                                                                                                                                                                                                |
| Doka 2003-II         | Doka G (2003) Life Cycle Inventories of Waste Treatment Services, part II: waste incineration. ecoinvent report No. 13, part III. Swiss Centre for Life Cycle Inventories, Dübendorf, 2003.<br>http://www.doka.ch/13 II WasteIncineration.pdf                                                                                                                                                                                                                                                                   |
| Doka 2003-III        | Doka G (2003) Life Cycle Inventories of Waste Treatment Services, part III: Landfills - Underground<br>Deposits - Landfarming, ecoinvent report No. 13, part III. Swiss Centre for Life Cycle Inventories,<br>Dübendorf, 2003. http://www.doka.ch/13_III_Landfills.pdf                                                                                                                                                                                                                                          |
| Doka 2003-IV         | Doka G (2003) Life Cycle Inventories of Waste Treatment Services, part IV: Wastewater treatment.<br>ecoinvent report No. 13, part IV. Swiss Centre for Life Cycle Inventories, Dübendorf, 2003.<br>http://www.doka.ch/13_IV_WastewaterTreatment.pdf                                                                                                                                                                                                                                                             |
| Doka 2008a           | Doka G (2008) Life Cycle Inventory data of mining waste: Emissions from sulfidic tailings disposal. For<br>BAFU/FOEN (Swiss EPA), April 2008. http://www.doka.ch/SulfidicTailingsDisposalDoka.pdf (3 Apr<br>2008)                                                                                                                                                                                                                                                                                               |
| Doka 2008b           | Doka G. (2008) Non-radiological emissions from uranium tailings: A generic, global model for Life Cycle<br>Inventory data. Doka Life Cycle Assessments, Zurich, November 2008.<br>http://www.doka.ch/PSluraniumtailingsDoka.pdf (19 Feb 2009)                                                                                                                                                                                                                                                                   |
| Doka 2009            | Doka G. (2009) Life Cycle Inventory of the disposal of lignite spoil, coal spoil and coal tailings. Doka Life Cycle Assessments, Zurich, For the Paul Scherrer Institute PSI, Nov 2009.<br>http://www.doka.co.ll.ailings.ndf.(10.4nr 2010).                                                                                                                                                                                                                                                                     |
| Doka 2013            | Doka G. (2013) Updates to Life Cycle Inventories of Waste Treatment Services - part II: waste incineration.<br>Doka Life Cycle Assessments, Zurich, 2013. Available at<br>http://www.doka.ch/ecoinyentMSWlundatel Cl2013.adf                                                                                                                                                                                                                                                                                    |
| Doka 2017            | Doka G (2017) A model for waste-specific and climate-specific life cycle inventories of open dumps and unsanitary landfilling of waste. Doka Life Cycle Assessments, Zurich, Switzerland. September 2017. Available at http://www.doka.ch/nublications.htm                                                                                                                                                                                                                                                      |
| Doka 2018            | Doka G. (2018) A model for waste-specific and climate-specific life cycle inventories of tailings impoundments. Report Version 2. Doka Life Cycle Assessments, Zurich, Switzerland. Available at http://www.doka.ch/nublications.htm                                                                                                                                                                                                                                                                            |
| Doka 2020-5          | Doka G (2020) Two models for waste-specific and climate-specific life cycle inventories of excavation material landfills and construction & demolition waste landfills. Doka Life Cycle Assessments, Zurich, Switzerland. Commissioned by Swiss Federal Office for the Environment (FOEN). June 2020. Available at http://www.doka.ch/publications.htm                                                                                                                                                          |
| Doka 2020-M          | Doka G. (2020) New database exchanges for characterisation factors of the Swiss method of environmental scarcity. Memorandum. Doka Ökobilanzen, Zürich, Switzerland. Commissioned by Swiss Federal Office for the Environment (FOEN). June 2020. Available at http://www.doka.ch/publications.htm                                                                                                                                                                                                               |

| Doka 2021                | Doka G. (2021) Calculation manual for LCI calculation tools for regionalised waste treatment. Extended and updated version of May 2021. By Doka Life Cycle Assessments, Zurich, Switzerland. Available at http://www.doka.ch/publications.htm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Doka 2023-7              | Doka G (2023) Calculation manual for LCI calculation tools for regionalised waste treatment. Extended and updated fourth version of April 2023. By Doka Life Cycle Assessments, Zurich, Switzerland. Available at http://www.doka.ch/publications.htm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DQG 2013                 | Weidema B P, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Vadenbo C O, Wernet G (2013)<br>Overview and methodology – Data quality guideline for the ecoinvent database version 3 – final version<br>(v3) (5 May 2013). Ecoinvent Report 1(v3). ecoinvent Centre, St. Gallen.<br>http://www.ecoinvent.org/files/dataqualityguideline ecoinvent_3_20130506.pdf (12 Dec 2017)<br>http://www.ecoinvent.org/fileadmin/documents/en/Data_Quality_Guidelines/01_DataQualityGuideline_v3_<br>Final.pdf (8 May 2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EC 2001                  | European Commission (2001) Disposal and recycling routes for sewage sludge – Scientific and technical sub-component report 23 October, 2001. European Commission, DG Environment – B/2 Luxembourg: Office for Official Publications of the European Communities, 2001.<br>http://europa.eu.int/comm/environment/waste/sludge/sludge_disposal3.pdf (17 Aug 2005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EEA 2020                 | EEA (2020) "Waterbase - UWWTD: Urban Waste Water Treatment Directive – reported data". Version 8,<br>European Environment Agency EEA, Directorate-General for Environment (DG ENV), 20 Nov 2020.<br>https://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-directive-7<br>and https://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          | directive-7/waterbase-uwwtd/waterbase-uwwtd-csv-files/download (4 Dec 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Eurostat 2020            | Eurostat (2020) Agri-environmental indicator - soil erosion. Statistics Explained. Eurostat, European Union (EU), Feb 2020, ISSN 2443-8219. https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator soil_erosion (20 Apr 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Eurostat 2020            | Eurostat (2020) Sewage sludge production and disposal from urban wastewater (in dry substance (d.s)) (ten00030), Eurostat – Environment – Water. Eurostat, Statistical Office of the European Union, Luxembourg. https://ec.europa.eu/eurostat/web/environment/water (8 Jul 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fahlenkamp et al. 2008   | Fahlenkamp H, Nöthe T, Nowotny N, Launer M (2008): Untersuchungen zum Eintrag und zur Elimination von gefährlichen Stoffen in kommunalen Kläranlagen (Phase 3). Fakultät Chemie- und Bioingenieurwesen, Lehrstuhl Umwelttechnik, Technische Universität Dortmund. Forschungsprojekt des Ministeriums für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen. Projekt Nr. IV-9-0421720030.<br>https://www.lanuv.nrw.de/fileadmin/lanuv/wasser/abwasser/forschung/pdf/Abschlussbericht%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20-%20(Stand%20-%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20-%20(Stand%20(Stand%20-%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand%20(Stand% |
| Fahner et al. 1995       | Fahner S, Bührer H, Grabski C (1995) Ökobilanz einer kommunalen ARA am Beispiel der ARA 'Ergolz I'<br>in Sissach, BL. Diploma work Ingenieurschule beider Basel, Muttenz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fakkaew et al. 2018      | Fakkaew K, Koottatep T, Polprasert C (2018) Faecal Sludge Treatment and Utilization by Hydrothermal CarbonizationJournal of Environmental Management, Volume 216, 15 June 2018, Pages 421-426<br>http://uest.ntua.gr/swws/proceedings/pdf/Full_paper_SWWS2016_Fakkaew.pdf (15 Feb 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Feldmann & Hirner 1995   | Feldmann J, Hirner AV (1995) Occurrence of volatile metal and metalloid species in landfill and sewage gases. Intern.J.Environ.Anal.Chem. 60 (1995) 339-359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Foley et al. 2010        | Foley J, de Haas D, Hartley K, Lant P (2010) Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research Vol. 44 (2010), p. 1654–1666.<br>https://pdf.sciencedirectassets.com/271768/1-s2.0-S0043135410X00057/1-s2.0-S0043135409007738/main.pdf (5 Mar 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frischknecht et al. 1996 | Frischknecht R., Bollens U., Bosshart S., Ciot M., Ciseri L., Doka G., Dones R., Gantner U., Hischier R. and Martin A. (1996): Ökoinventare von Energiesystemen.ETH/PSI, Zürich/Villigen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Guillemet et a. 2008     | Guillemet TA, Maesen P, Delcarte E, Lognay GC, Gillet A, Claustriaux JJ, Culot M (2008) Factors influencing microbiological and chemical composition of South-Belgian raw sludge. Biotechnology, Agronomy, Society and Environment BASE, volume 13 (2009), No 2, 249-255,<br>https://popups.uliege.be/1780-4507/index.php?id=4034 (18 Jan 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Heldstab et al. 2013     | <ul> <li>Heldstab J, Leippert F, Biedermann R, Schwank O (2013) Stickstoffflüsse in der Schweiz 2020 –<br/>Stoffflussanalyse und Entwicklungen. Umwelt-Wissen Nr. 1309. Bundesamt für Umwelt BAFU, Bern, 2013.</li> <li>https://www.blw.admin.ch/dam/blw/de/dokumente/Nachhaltige%20Produktion/Umwelt/Stickstofffl%C3%BCsse%20in%20der%20Schweiz%202020.pdf.download.pdf/Stickstofffl%C3%BCsse%20in%20 der%20Schweiz%202020.pdf (17 Sept 2019)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Hischier et al. 2007     | Hischier R., Classen M., Lehmann M. and Scharnhorst W. (2007) Life cycle inventories of Electric and<br>Electronic Equipment: Production, Use and Disposal. ecoinvent report No. 18. Empa / Technology &<br>Society Lab, Swiss Centre for Life Cycle Inventories, Dübendorf, 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hobson 2000              | Hobson J (2000) Good Practice Guidance and Uncertainty Management in National Greenhouse Gas<br>Inventories – CH4 and N2O Emissions from Waste Water Handling. Intergovernmental Panel on Climate<br>Change IPCC. Background paper. http://www.ipcc-<br>nggip.iges.or.jp/public/gp/bgp/5_2_CH4_N2O_Waste_Water.pdf (12 Jan 2013)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Imbeault-Tétreault 2013  | Imbeault-Tétreault H (2013) Ecoinvent dataset treatment, sludge from pulp and paper production, landfarming. Authored 31 Oct 2013, ecoinvent Association Zürich. Accessed in ecoinvent v3.7.1 (8 Jan 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IPCC 2019                | Calvo Buendia E, Tanabe K, Kranjc A, Baasansuren J, Fukuda M, Ngarize S, Osako A, Pyrozhenko Y, Shermanau P. and Federici S. (eds). (2019) 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories – Volume 5: Waste – Chapter 6 Wastewater Treatment and Discharge. Task                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Lucabled 2002            | Force on National Greenhouse Gas Inventories (TFI), Intergovernmental Panel on Climate Change (IPCC),<br>Published: IPCC, Switzerland. https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html (2 Jun 2020)                                                                                                                                                                                                                                                                                                   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jungbluth 2005           | Energiesystemen in Ökobilanzen für die Schweiz. Final report ecoinvent 2000 No. 6-XI, Paul Scherrer<br>Institut Villigen, Swiss Centre for Life Cycle Inventories, Dübendorf, CH.                                                                                                                                                                                                                                                                                                                                |
| Jungbluth et al. 2012    | Jungbluth N, Stucki M, Flury K, Frischknecht R, Büsser S (2012) Life Cycle Inventories of Photovoltaics -<br>Version 2012. ESU-services Ltd., Uster, Switzerland. Comissioned by Swiss Federal Office of Energy<br>SFOE, September 2012. http://treeze.ch/fileadmin/user_upload/downloads/PublicLCI/jungbluth-2012-LCI-<br>Photovoltaics.pdf (22 Sept 2014)                                                                                                                                                      |
| Kägi 2019                | Kägi T (2019) Treatment of sewage sludge by anaerobic digestion – CH. Dataset in ecoinvent v3.7.1 (2020), ecoinvent Association, Zurich.                                                                                                                                                                                                                                                                                                                                                                         |
| Kalbar et al. 2018       | Kalbar PP, Munoz I, Birkved M (2018) WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems. Science of the Total Environment, 622-623, 1649–1657.<br>https://backend.orbit.dtu.dk/ws/portalfiles/portal/140945648/Kalbar_et_al_STOTEN_2017.pdf (3 Jun 2020)                                                                                                                                                                                                   |
| Kraus 2003               | Kraus J (2003) Herstellung von Leichtzuschlagstoffen aus Klärschlamm. Dissertation, Schriftenreihe des ISWW, Band 112, Institut für Siedlungswasserwirtschaft (ISWW), Universität Karlsruhe (TH), Germany.<br>http://www.ubka.uni-karlsruhe.de/vvv/2003/bau-geo/13/13.pdf (24 Sep 2003)                                                                                                                                                                                                                          |
| Labhardt 1996            | Labhardt A. (1996) Ausführliche Inventarisierung des Systems Kanalisation [Detailed Inventory of the sewer system]. ESU-Reihe, 2/96, Gruppe Energie-Stoffe-Umwelt ESU, Laboratorium für Energiesysteme, Institut für Energietechnik, ETH Zürich, Switzerland.                                                                                                                                                                                                                                                    |
| Levova 2014              | Personal Communication with Tereza Levova, Data Analyst, ecoinvent Centre, in April 2014.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lu & Tian 2017           | Lu C, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data, 9, 181–192.<br>https://essd.copernicus.org/articles/9/181/2017/essd-9-181-2017.pdf (12 April 2021)                                                                                                                                                                                                                       |
| Lugato et al. 2014       | Lugato E, Bampa F, Panagos P, Montanarella L, Jones A (2014) Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global Change Biology (2014) 20, 3557–3567.                                                                                                                                                                                                                                                                             |
|                          | http://onlinelibrary.wiley.com/store/10.1111/gcb.12551/asset/gcb12551.pdf?v=1&t=i8hfbril&s=6a1354913<br>535bc4324c35aaca1fc03549276fd8c (14 Apr 2015)                                                                                                                                                                                                                                                                                                                                                            |
| Maizel & Remucal 2017    | Maizel AC, Remucal CK (2017) The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter. Water Research 122 (2017) 42–52.<br>https://www.sciencedirect.com/science/article/abs/pii/S0043135417304190?via%3Dihub (15 Feb 2021)                                                                                                                                                                                                                      |
| Maurer 2002              | Personal communication with Max Maurer, Deputy head of the Environmental Engineering Department, EAWAG (Swiss Federal Institute of Aquatic Science and Technology), Dübendorf, May and April 2002.                                                                                                                                                                                                                                                                                                               |
| McJannet et al. 2012     | McJannet DL, Webster IT, Cook FJ (2012) An area-dependent wind function for estimating open water<br>evaporation using land-based meteorological data. Environmental Modelling & Software 31 (2012)<br>Environmental Modelling & Software 31 (2012) 76-83. https://pdf.sciencedirectassets.com/271872/1-s2.0-<br>S1364815212X00021/1-s2.0-S1364815211002805/main.pdf (11 Mar 2021)                                                                                                                               |
| Monteith & Unsworth 2013 | Monteith JL & Unsworth MH (2013) Principles of Environmental Physics. Fourth Edition, Elsevier<br>Academic Press.<br>https://www.academia.edu/download/49025326/2014_Principle_of_Environmental_Physics_4th_Ed.pdf (11                                                                                                                                                                                                                                                                                           |
| Morera et al. 2020       | Mar 2021) Cited in https://en.wikipedia.org/wiki/Tetens_equation (11 Mar 2021)<br>Morera S, Santana MVE, Comas J, Rigola M, Corominas L (2020) Evaluation of different practices to                                                                                                                                                                                                                                                                                                                              |
|                          | estimate construction inventories for life cycle assessment of small to medium wastewater treatment plants.<br>Journal of Cleaner Production 245 (2020).<br>https://www.sciencedirect.com/science/article/pii/S0050652610336388 (5 Mar 2021)                                                                                                                                                                                                                                                                     |
| Munoz 2019               | Munoz I (2019) WW I CL version 3.0: changes and improvements to WW I CL v2. Wastewater life avala                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wull02 2019              | inventory initiative, 20 LCA consultants, Aalborg, Denmark, January 2019. https://lca-net.com/wp-<br>content/uploads/WW-LCI-v.3_changes-and-improvements-to-WW-LCI-v.2_20190108.pdf (19 Dez 2020)                                                                                                                                                                                                                                                                                                                |
| Munoz et al. 2017        | Munoz I, Otte N, Van Hoof G., Rigarlsford G (2017) A model and tool to calculate life cycle inventories of chemicals discharged down the drain. Int J Life Cycle Assess, 22, pages 986–1004 (2017).<br>https://link.springer.com/article/10.1007/s11367-016-1189-3 (18 Apr 2018)                                                                                                                                                                                                                                 |
| Murray et al. 2018       | Murray CJL, Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, et al. [total of 1043 co-authors] (2018) Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Global Health Metrics, Volume 392, Issue 10159, p1789-1858, November 10, 2018. https://www.thelancet.com/action/showPdf?pii=S0140-6736%2818%2932225-6 (14 May 2020) |
| Nättorp & Jutz 2021      | Nättorp A, Jutz M (2021) Übersicht zu aktuellen Projekten zum Phosphorrecycling in der Schweiz.<br>Phosphornetzwerk Schweiz, Fachhochschule Nordwestschweiz, Muttenz, Switzerland.<br>https://pxch.ch/projekte.html (8 Jun 2021)                                                                                                                                                                                                                                                                                 |
| Nemecek & Schnetzer 2011 | Nemecek T & Schnetzer J (2011) Methods of assessment of direct field emissions for LCIs of agricultural production systems – Ecoinvent Data v3.0. Agroscope Reckenholz-Tänikon Research Station ART, Zurich, Switzerland, August 2011.<br>https://v34.ecoquery.ecoinvent.org/File/File?fileName=ecoinvent+3+report_Agriculture.7z&hash=-<br>92635707&tyme=Reports (3 Apr 2018)                                                                                                                                   |
| Notter & Graf 2016       | Notter B, Graf C (2016) Emissionsinventar stationäre Motoren und Gasturbinen – Standbericht 2014.<br>Schlussbericht Bern, 22. Dezember 2016. INFRAS Berne, Comissioned by Bundesamt für Umwelt BAFU,                                                                                                                                                                                                                                                                                                             |

|                          | Berne- https://www.bafu.admin.ch/dam/bafu/de/dokumente/luft/externe-studien-<br>berichte/Emissionsinventar_stationaere_Motoren_und_Gasturbinen_Standbericht_2014 pdf_(3 Dec 2020)                                                                                                                                                                                                                                                                                                                 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ÖBU 2013                 | Frischknecht R, Büsser Knöpfel S, Flury K, Stucki M (2013) Ökofaktoren Schweiz 2013 gemäss der<br>Methode der ökologischen Knappheit – Methodische Grundlagen und Anwendung auf die Schweiz. BAFU<br>Reihe Umwelt-Wissen, Nr. UW-1330, Bundesamt für Umwelt BAFU, ÖBU – Netzwerk für nachhaltiges<br>Wirtschaften Bern, 2013. http://www.oebu.ch/themen/nachhaltigkeit-in-unternehmen/umwelt/oekofaktoren-<br>schweiz-2013-nun-erhaeltlich.html (14 Mar 2014) also at www.bafu.admin.ch/uw-1330-d |
| Onabanjo 2016            | Onabanjo T (2016) Energy recovery from human faeces via gasification: A thermodynamic equilibrium modelling approach. Energy Conversion and Management, 118 (2016) pp. 364–376.<br>https://www.researchgate.net/publication/300086483_Energy_recovery_from_human_faeces_via_gasificati on_A_thermodynamic_equilibrium_modelling_approach (15 Feb 2021)                                                                                                                                            |
| Risch et al. 2014        | Risch E, Loubet P, Nunez M, Roux P (2014) How environmentally significant is water consumption during wastewater treatment? – Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations. Water Research Vol.57 (2014) pp.20-30.<br>https://www.sciencedirect.com/science/article/abs/pii/S0043135414002139 (11 Mar 2021)                                                                                                                          |
| Risch et al. 2015        | Risch E, Gutierrez O, Roux P, Boutin C, Corominas L (2015) Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems. Water Research 77 (2015) 35-48.<br>https://www.sciencedirect.com/science/article/abs/pii/S0043135415001700 (6 Mar 2021)                                                                                                                                                                                                     |
| Roskosch & Heidecke 2018 | Roskosch A & Heidecke P (2018) Klärschlammentsorgung in der Bundesrepublik Deutschland.<br>Umweltbundesamt, Dessau-Rosslau, Germany. https://www.deutsche-phosphor-plattform.de/wp-<br>content/uploads/2018/07/180425_uba_fb_klaerschlamm_bf_low.pdf (11 Jan 2021)                                                                                                                                                                                                                                |
| Schuhmacher 2012         | Schuhmacher C (2012) Technische Daten ARA. Abwaserreinigung Kloten Opfikon AKO, Glattbrugg<br>Switzerland. AV244, 7 Jun 2012. https://www.klaeranlage.ch/ARA/wp-<br>content/uploads/2017/08/TechnischeDatenARA.pdf (27 Jul 2019)                                                                                                                                                                                                                                                                  |
| SIERM 2021               | SIERM (2021) Station d'épuration - Olwisheim [026736100372]. Système d'Information sur l'Eau Rhin-<br>Meuse (SIERM), L'agence de l'eau Rhin-Meuse, Moulins-les-Metz, France. https://rhin-<br>meuse.eaufrance.fr/resultats-EPU?perimetre=026736100372 [Tab 'Exports'] (4 Mar 2021)                                                                                                                                                                                                                |
| Socolof et al. 2001      | Socolof M. L., Overly J. G., Kincaid L. E. and Geibig J. R. (2001) Desktop Computer Displays: A Life-<br>Cycle Assessment. Volume 1. EPA-744- R-01-004a. U.S. Environmental Protection Agency (US-EPA),<br>Washington D.C. (USA). https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100M8XQ.TXT (15 Dec 2020)                                                                                                                                                                                          |
| Sunny et al. 2017        | Sunny et al. 2017, Treatment Of Effluent From Plywood Industry. International Research Journal of Engineering and Technology (IRJET), Volume: 03 Issue: 02   Feb-2016.<br>https://www.irjet.net/archives/V3/i6/IRJET-V316211.pdf (20 Dec 2020)                                                                                                                                                                                                                                                    |
| Treyer 2018              | Treyer K (2018) ecoinvent dataset ' heat and power co-generation, biogas, gas engine, CH'. File timestamp 27 Jun 2018. In ecoinvent LCI database https://v37.ecoquery.ecoinvent.org/Details/UPR/8294fc1e-ae5c-4063-a343-d1379fc8857e/8b738ea0-f89e-4627-8679-433616064e82 (3 Dec 2020)                                                                                                                                                                                                            |
| UN 2015                  | United Nations (2015) Wastewater Management – A UN-Water Analytical Brief. Technical Report. United Nations, UN Water, New York, May 2015<br>http://www.unwater.org/fileadmin/user_upload/unwater_new/docs/UN-<br>Water_Analytical_Brief_Wastewater_Management.pdf (15 May 2016)                                                                                                                                                                                                                  |
| UN-Habitat 2018          | UN-Habitat (2018) Metadata on SDGs Indicator 6.3.1 – Indicator category: Tier II. United Nations Human Settlements Programme, Nairobi, Kenya and World Health Organisation WHO.<br>https://unhabitat.org/sites/default/files/2020/11/metadata_on_sdg_indicator_6.3.1.pdf (29 Dec 2020)                                                                                                                                                                                                            |
| von Raczeck 1993         | von Raczeck H (1993) Experimentelle Untersuchung des Emissions- und Abbrandverhaltens von klärschlämmen in einer halbtechnischen Wirbelschichtfeuerung. VDI-Berichte, Reihe 6: Energieerzeugung, Nr. 281, Düsseldorf 1993. cited in Kraus 2003                                                                                                                                                                                                                                                    |
| Vriens et al. 2017       | Vriens B, Voegelin A, Hug SJ, Kaegi R, Winkel LHE, Buser AM, Berg M (2017) Quantification of<br>Element Fluxes in Wastewaters: A Nationwide Survey in Switzerland. Environ. Sci. Technol. 2017, 51,<br>10943-10953.<br>https://www.researchgate.net/publication/318127365_Quantification_of_Element_Fluxes_in_WastewatersA Nationwide_Survey_in_Switzerland (7 Jul 2020) and SU                                                                                                                   |
| Werner 2014-a            | https://pubs.acs.org/doi/suppl/10.1021/acs.est.7b01731/suppl_file/es7b01731_si_001.pdf (7 Jul 2020)<br>Werner F (2014) Dataset "treatment of wastewater from particle board production//RER" in ecoinvent<br>database v3.6 (2016). Generated by Frank Werner in April 2014.<br>https://v36.ecoquery.ecoinvent.org/Details/UPR/f03036d5-0f91-41ae-89bf-5a9138a0b0c8/8b738ea0-f89e-<br>4627-8679-433616064e82 (2 Apr 2014)                                                                          |
| Werner 2014-b            | Werner F (2014) Dataset "treatment of wastewater from medium density fibreboard production//RER" in ecoinvent database v3.6 (2016). Generated by Frank Werner in April 2014.<br>https://v36.ecoquery.ecoinvent.org/Details/UPR/63ad7fd1-b0d7-4eb6-a082-76c48c22ea2f/8b738ea0-f89e-4627-8679-433616064e82 (2 Apr 2014)                                                                                                                                                                             |
| Werner 2014-c            | Werner F (2014) Dataset "treatment of wastewater from hard fibreboard production//RER" in ecoinvent database v3.6 (2016). Generated by Frank Werner in April 2014.<br>https://v36.ecoquery.ecoinvent.org/Details/UPR/73ea18ea-afc1-4463-ba07-845cda70a8b1/8b738ea0-f89e-4627-8679-433616064e82 (2 Apr 2014)                                                                                                                                                                                       |
| Werner 2020              | Personal Communication with Frank Werner, Werner Umwelt & Entwicklung. Heiden-CH. in March 2020.                                                                                                                                                                                                                                                                                                                                                                                                  |
| Werner et al. 2003       | Werner F., Althaus HJ., Künniger T. and Richter K. (2003) Life Cycle Inventories of Wood as Fuel and Construction Material. Final report econvent 2000 No. 9. EMPA Dübendorf, Swiss Centre for Life Cycle Inventories, Dübendorf, CH, http://www.ecoinvent.ch                                                                                                                                                                                                                                     |
| WHO/UNICEF JMP (2019)    | WHO/UNICEF JMP (2019) "Estimates on the use of water, sanitation and hygiene by country (2000-2017)". World Health Organization (WHO) and United Nations Children's Fund (UNICEF), Joint                                                                                                                                                                                                                                                                                                          |

Xue et al. 2019

Monitoring Programme (JMP) for Water Supply, Sanitation ad Hygiene (WASH), July 2019. https://washdata.org/data/downloads (3 Jan 2021) Xue X, Cashman S, Gaglione A, Mosley J, Weiss L, Ma XC, Cashdollar J, Garland J (2019) Holistic analysis of urban water systems in the Greater Cincinnati region: (part 1) life cycle assessment and cost implication. Water Research X, Vol. 2 (2019), 100015. https://www.sciencedirect.com/sdfe/reader/pii/S258991471830015X/pdf (3 Mar 2021)